
Commander X16 Programmer's Reference Guide

- 1 -

Commander X16 Programmer's Reference Guide

Michael Steil, mist64@mac.com

This is the PRELIMINARY Programmer's Reference Guide for the Commander X16 computer. Every and any information in

this document can change, as the product is still in development!

Table of contents

Chapter 1: Overview

Chapter 2: Editor

Chapter 3: BASIC

Chapter 4: KERNAL

Chapter 5: Math Library

Chapter 6: Machine Language Monitor

Chapter 7: Memory Map

Chapter 8: Video Programming

Chapter 9: Sound Programming

Chapter 10: I/O Programming

Chapter 11: Working with CMDR-DOS

Chapter 12: Hardware Pinouts

Chapter 13: Upgrade Guide

Appendix A: Sound

mailto:mist64@mac.com

Commander X16 Programmer's Reference Guide

- 2 -

Chapter 1: Overview

The Commander X16 is a modern home computer in the philosophy of Commodore computers like the VIC-20 and the C64.

Features:

8-bit 65C02 CPU at 8 MHz

512 KB or 2 MB RAM banked RAM

512 KB ROM

Expansion Cards (Gen 1) & Cartridges (Gen 1 and Gen 2)

Up to 3.5MB of RAM/ROM

5 32-byte Memory-Mapped IO slots

VERA video controller

Up to 640x480 resolution

256 colors from a palette of 4096

128 sprites

VGA, NTSC and RGB output

three sound generators

Yamaha YM2151: 8 channels, FM synthesis

VERA PSG: 16 channels, 4 waveforms

VERA PCM: 48 kHz, 16 bit, stereo

Connectivity:

PS/2 keyboard and mouse

4 NES/SNES controllers

SD card

Commodore Serial Bus ("IEC")

Many Free GPIOs ("user port")

As a modern sibling of the line of Commodore home computers, the Commander X16 is reasonably compatible with

computers of that line.

Pure BASIC programs are fully backwards compatible with the VIC-20 and the C64.

POKEs for video and audio are not compatible with any Commodore computer. (There are no VIC or SID chips, for

example.)

Pure machine language programs ($FF81+ KERNAL API) are compatible with Commodore computers.

Commander X16 Programmer's Reference Guide

- 3 -

Chapter 2: Editor

The X16 has a built-in screen editor that is backwards-compatible with the C64, but has many new features.

Modes

The editor's default mode is 80x60 text mode. The following text mode resolutions are supported:

Mode Description

$00 80x60 text

$01 80x30 text

$02 40x60 text

$03 40x30 text

$04 40x15 text

$05 20x30 text

$06 20x15 text

$07 22x23 text

$08 64x50 text

$09 64x25 text

$0A 32x50 text

$0B 32x25 text

$80
320x240@256c

40x30 text

Mode $80 contains two layers: a text layer on top of a graphics screen. In this mode, text color 0 is translucent instead of

black.

To switch modes, use the BASIC statement SCREEN or the KERNAL API screen_mode . In the BASIC editor, the F4 key

toggles between modes 0 (80x60) and 3 (40x30).

Commander X16 Programmer's Reference Guide

- 4 -

ISO Mode

In addition to PETSCII, the X16 also supports the ISO-8859-15 character encoding. In ISO-8859-15 mode ("ISO mode"):

The character set is switched from Commodore-style (with PETSCII drawing characters) to a new ASCII/ISO-8859-15

compatible set, which covers most Western European writing systems.

The encoding (CHR$() in BASIC and BSOUT in machine language) now complies with ASCII and ISO-8859-15.

The keyboard driver will return ASCII/ISO-8859-15 codes.

This is the encoding:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x

2x ! " # $ % & ' () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ^ _

6x ` a b c d e f g h i j k l m n o

7x p q r s t u v w x y z { | } ~

8x

9x

Ax ¡ ¢ £ € ¥ Š § š © ª « ¬ 🦋 ® ¯

Bx ° ± ² ³ Ž µ ¶ · ž ¹ º » Œ œ Ÿ ¿

Cx À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

Dx Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

Ex à á â ã ä å æ ç è é ê ë ì í î ï

Fx ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

The non-printable areas $00-$1F and $80-$9F in the character set are filled with inverted variants of the codes

$40-$5F and $60-$7F, respectively.

The code $AD is a non-printable soft hyphen in ISO-8859-15. The ROM character set contains the Commander X16

logo at this location.

ISO mode can be enabled and disabled using two new control codes:

CHR$($0F) : enable ISO mode

CHR$($8F) : enable PETSCII mode (default)

You can also enable ISO mode in direct mode by pressing Ctrl+ O .

Important: In ISO mode, BASIC keywords need to be written in upper case, that is, they have to be entered with the Shift

key down, and abbreviating keywords is no longer possible.

Background Color

Commander X16 Programmer's Reference Guide

- 5 -

In regular BASIC text mode, the video controller supports 16 foreground colors and 16 background colors for each character

on the screen.

The new "swap fg/bg color" code is useful to change the background color of the cursor, like this:

PRINT CHR$(1); : REM SWAP FG/BG

PRINT CHR$($1C); : REM SET FG COLOR TO RED

PRINT CHR$(1); : REM SWAP FG/BG

The new BASIC instruction COLOR makes this easier, but the trick above can also be used from machine code programs.

To set the background color of the complete screen, it just has to be cleared after setting the color:

 PRINT CHR$(147);

Scrolling

The C64 editor could only scroll the screen up (when overflowing the last line or printing or entering DOWN on the last line).

The X16 editor scrolls both ways: When the cursor is on the first line and UP is printed or entered, the screen contents scroll

down by a line.

New Control Characters

This is the set of all supported PETSCII control characters. Entries in bold indicate new codes compared to the C64:

Code Code

$00 NULL VERBATIM MODE $80

$01 SWAP COLORS COLOR: ORANGE $81

$02 PAGE DOWN PAGE UP $82

$03 STOP RUN $83

$04 END HELP $84

$05 COLOR: WHITE F1 $85

$06 MENU F3 $86

$07 BELL F5 $87

$08 BACKSPACE F7 $88

$09 TAB F2 $89

$0A LF F4 $8A

$0B - F6 $8B

$0C - F8 $8C

$0D RETURN SHIFTED RETURN $8D

$0E CHARSET: LOWER/UPPER CHARSET: UPPER/PETSCII $8E

$0F CHARSET: ISO ON CHARSET: ISO OFF $8F

$10 F9 COLOR: BLACK $90

Commander X16 Programmer's Reference Guide

- 6 -

$11 CURSOR: DOWN CURSOR: UP $91

$12 REVERSE ON REVERSE OFF $92

$13 HOME CLEAR $93

$14 DEL INSERT $94

$15 F10 COLOR: BROWN $95

$16 F11 COLOR: LIGHT RED $96

$17 F12 COLOR: DARK GRAY $97

$18 SHIFT+TAB COLOR: MIDDLE GRAY $98

$19 FWD DEL COLOR: LIGHT GREEN $99

$1A - COLOR: LIGHT BLUE $9A

$1B ESC COLOR: LIGHT GRAY $9B

$1C COLOR: RED COLOR: PURPLE $9C

$1D CURSOR: RIGHT CURSOR: LEFT $9D

$1E COLOR: GREEN COLOR: YELLOW $9E

$1F COLOR: BLUE COLOR: CYAN $9F

Notes:

$01: SWAP COLORS swaps the foreground and background colors in text mode

$07/$08/$09/$0A/$18/$1B: have been added for ASCII compatibility [$08/$09/$0A/$18 are NYI]

$80: VERBATIM MODE prints the next character (only!) as a glyph without interpretation. This is similar to quote

mode, but also includes codes CR ($0D) and DEL ($14).

F9-F12: these codes match the C65 additions

$84: This code is generated when pressing SHIFT+END.

Additionally, the codes $04/$06/$0B/$0C are interpreted when printing in graphics mode using GRAPH_put_char .

Commander X16 Programmer's Reference Guide

- 7 -

Keyboard Layouts

The editor supports multiple keyboard layouts.

Default Layout

On boot, the US layout (ABC/X16) is active:

In PETSCII mode, it matches the US layout where possible, and can reach all PETSCII symbols.

In ISO mode, it matches the Macintosh US keyboard and can reach all ISO-8859-15 characters. Some characters are

reachable through key combinations:

Key Result

Alt+1 ¡

Alt+3 £

Alt+4 ¢

Alt+5 §

Alt+7 ¶

Alt+9 ª

Alt+0 º

Alt+q œ

Alt+r ®

Alt+t Þ

Alt+y ¥

Alt+o ø

Alt+\ «

Alt+s ß

Alt+d ð

Alt+g ©

Alt+l ¬

Alt+' æ

Alt+m µ

Alt+/ ÷

Shift+Alt+2 €

Shift+Alt+8 °

Shift+Alt+9 ·

Shift+Alt+- X16 logo

Commander X16 Programmer's Reference Guide

- 8 -

Shift+Alt+= ±

Shift+Alt+q Œ

Shift+Alt+t þ

Shift+Alt+\ »

Shift+Alt+a ¹

Shift+Alt+d Ð

Shift+Alt+k X16 logo

Shift+Alt+' Æ

Shift+Alt+c ³

Shift+Alt+b ²

Shift+Alt+/ ¿

(The X16 logo is code point \xad, SHY, soft-hyphen.)

The following combinations are dead keys:

Alt+`

Alt+ 6

Alt+ e

Alt+ u

Alt+ p

Alt+ a

Alt+ k

Alt+ ;

Alt+ x

Alt+ c

Alt+ v

Alt+ n

Alt+ ,

Alt+ .

Shift+Alt+ S

They generate additional characters when combined with a second keypress:

First

Key

Second

Key
Result

Alt+` a à

Alt+` e è

Alt+` i ì

Alt+` o ò

Alt+` u ù

Alt+` A À

Alt+` E È

Commander X16 Programmer's Reference Guide

- 9 -

Alt+` I Ì

Alt+` O Ò

Alt+` U Ù

Alt+` ␣ `

Alt+6 e ê

Alt+6 u û

Alt+6 i î

Alt+6 o ô

Alt+6 a â

Alt+6 E Ê

Alt+6 U Û

Alt+6 I Î

Alt+6 O Ô

Alt+6 A Â

Alt+e e é

Alt+e y ý

Alt+e u ú

Alt+e i í

Alt+e o ó

Alt+e a á

Alt+e E É

Alt+e Y Ý

Alt+e U Ú

Alt+e I Í

Alt+e O Ó

Alt+e A Á

Alt+u e ë

Alt+u y ÿ

Alt+u u ü

Alt+u i ï

Alt+u o ö

Alt+u a ä

Commander X16 Programmer's Reference Guide

- 10 -

Alt+u E Ë

Alt+u Y Ÿ

Alt+u U Ü

Alt+u I Ï

Alt+u O Ö

Alt+u A Ä

Alt+p ␣ ,

Alt+a ␣ ¯

Alt+k a å

Alt+k A Å

Alt+x ␣ .

Alt+c c ç

Alt+c C Ç

Alt+v s š

Alt+v z ž

Alt+v S Š

Alt+v Z Ž

Alt+n o õ

Alt+n a ã

Alt+n n ñ

Alt+n O Õ

Alt+n A Ã

Alt+n N Ñ

Shift+Alt+s ␣ \xa0

Shift+Alt+; = ×

"␣" denotes the space bar.

ROM Keyboard Layouts

The following keyboard layouts are available from ROM. You can select one directly with the BASIC KEYMAP command, e.g.

KEYMAP"ABC/X16" , or via the X16 Control Panel with the BASIC MENU command.

Identifier Description Code

ABC/X16 ABC - Extended (X16) -

EN-US/INT United States - International 00020409

http://kbdlayout.info/00020409

Commander X16 Programmer's Reference Guide

- 11 -

EN-GB United Kingdom 00000809

SV-SE Swedish 0000041D

DE-DE German 00000407

DA-DK Danish 00000406

IT-IT Italian 00000410

PL-PL Polish (Programmers) 00000415

NB-NO Norwegian 00000414

HU-HU Hungarian 0000040E

ES-ES Spanish 0000040A

FI-FI Finnish 0000040B

PT-BR Portuguese (Brazil ABNT) 00000416

CS-CZ Czech 00000405

JA-JP Japanese 00000411

FR-FR French 0000040C

DE-CH Swiss German 00000807

EN-US/DVO United States - Dvorak 00010409

ET-EE Estonian 00000425

FR-BE Belgian French 0000080C

EN-CA Canadian French 00001009

IS-IS Icelandic 0000040F

PT-PT Portuguese 00000816

HR-HR Croatian 0000041A

SK-SK Slovak 0000041B

SL-SI Slovenian 00000424

LV-LV Latvian 00000426

LT-LT Lithuanian IBM 00000427

All remaining keyboards are based on the respective Windows layouts. EN-US/INT differs from EN-US only in Alt/AltGr

combinations and some dead keys.

The BASIC command KEYMAP allows activating a specific keyboard layout. It can be added to the auto-boot file, e.g.:

10 KEYMAP"NB-NO"

SAVE"AUTOBOOT.X16

Loadable Keyboard Layouts

http://kbdlayout.info/00000809
http://kbdlayout.info/0000041D
http://kbdlayout.info/00000407
http://kbdlayout.info/00000406
http://kbdlayout.info/00000410
http://kbdlayout.info/00000415
http://kbdlayout.info/00000414
http://kbdlayout.info/0000040E
http://kbdlayout.info/0000040A
http://kbdlayout.info/0000040B
http://kbdlayout.info/00000416
http://kbdlayout.info/00000405
http://kbdlayout.info/00000411
http://kbdlayout.info/0000040C
http://kbdlayout.info/00000807
http://kbdlayout.info/00010409
http://kbdlayout.info/00000425
http://kbdlayout.info/0000080C
http://kbdlayout.info/00001009
http://kbdlayout.info/0000040F
http://kbdlayout.info/00000816
http://kbdlayout.info/0000041A
http://kbdlayout.info/0000041B
http://kbdlayout.info/00000424
http://kbdlayout.info/00000426
http://kbdlayout.info/00000427

Commander X16 Programmer's Reference Guide

- 12 -

The tables for the active keyboard layout reside in banked RAM, at $A000 on bank 0:

Addresses Description

$A000-$A07F Table 0

$A080-$A0FF Table 1

$A100-$A17F Table 2

$A180-$A1FF Table 3

$A200-$A27F Table 4

$A280-$A07F Table 5

$A300-$A37F Table 6

$A380-$A3FF Table 7

$A400-$A47F Table 8

$A480-$A4FF Table 9

$A500-$A57F Table 10

$A580-$A58F
big-endian bitfield:

keynum codes for which Caps means Shift

$A590-$A66F dead key table

$A670-$A67E ASCIIZ identifier (e.g. "ABC/X16")

The first byte of each of the 11 tables is the table ID which contains the encoding and the combination of modifiers that this

table is for.

Bit Description

7 0: PETSCII, 1: ISO

6-3 always 0

2 Ctrl

1 Alt

0 Shift

AltGr is represented by Ctrl+Alt.

ID $C6 represents Alt or AltGr (ISO only)

ID $C7 represents Shift+Alt or Shift+AltGr (ISO only)

Empty tables have an ID of $FF.

The identifier is followed by 127 output codes for the keynum inputs 1-127.

Dead keys (i.e. keys that don't generate anything by themselves but modify the next key) have a code of 0 and are

further described in the dead key table (ISO only)

Keys that produce nothing have an entry of 0. (They can be distinguished from dead keys as they don't have an

entry in the dead key table.)

The dead key table has one section for every dead key with the following layout:

Commander X16 Programmer's Reference Guide

- 13 -

Byte Description

0 dead key ID (PETSCII/ISO and Shift/Alt/Ctrl)

1 dead key scancode

2 full length of this table in bytes

3 first additional key ISO code

4 first effective key ISO code

5 second additional key ISO code

6 second effective key ISO code

... ...

n-1 terminator 0xFF

Custom layouts can be loaded from disk like this:

BLOAD"KEYMAP",8,0,$A000

Here is an example that activates a layout derived from "ABC/X16", with unshifted Y and Z swapped in PETSCII mode:

100 KEYMAP"ABC/X16" :REM START WITH DEFAULT LAYOUT

110 BANK 0 :REM ACTIVATE RAM BANK 0

120 FORI=0TO11:B=$A000+128*I:IFPEEK(B)<>0THENNEXT :REM SEARCH FOR TABLE $00

130 POKEB+$2E,ASC("Y") :REM SET KEYNUM $2E ('Z') to 'Y'

140 POKEB+$16,ASC("Z") :REM SET KEYNUM $16 ('Y') to 'Z'

170 REM

180 REM *** DOING THE SAME FOR SHIFTED CHARACTERS

190 REM *** IS LEFT AS AN EXERCISE TO THE READER

Custom Keyboard Keynum Code Handler

Note: This is new behavior for R43, differing from previous releases.

If you need more control over the translation of keynum codes into PETSCII/ISO codes, or if you need to intercept any key

down or up event, you can hook the custom scancode handler vector at $032E/$032F.

On all key down and key up events, the keyboard driver calls this vector with

.A: keycode, where bit 7 (most-significant) is clear on key down, and set on key up.

The keynum codes are enumerated here , and their names, similar to that of PS/2 codes, are based on their function in the

US layout.

The handler needs to return a key event the same way in .A

To remove a keypress so that it is not added to the keyboard queue, return .A = 0.

To manually add a key to the keyboard queue, use the kbdbuf_put KERNAL API.

You can even write a completely custom keyboard translation layer:

Place the code at $A000-$A58F in RAM bank 0. This is safe, since the tables won't be used in this case, and the

active RAM bank will be set to 0 before entry to the handler.

Fill the locale at $A590.

https://github.com/X16Community/x16-rom/blob/master/inc/keycode.inc

Commander X16 Programmer's Reference Guide

- 14 -

For every keynum that should produce a PETSCII/ISO code, use kbdbuf_put to store it in the keyboard buffer.

Always set .A = 0 before return from the custom handler.

;EXAMPLE: A custom handler that prints "A" on Alt key down

setup:

 sei

 lda #<keyhandler

 sta $032e

 lda #>keyhandler

 sta $032f

 cli

 rts

keyhandler:

 pha

 and #$ff ;ensure A sets flags

 bmi exit ;A & 0x80 is key up

 cmp #$3c ;Left Alt keynum

 bne exit

 lda #'a'

 jsr $ffd2

exit:

 pla

 rts

Function Key Shortcuts

The following Function key macros are pre-defined for your convenience. These shortcuts only work in immediate mode.

When a program is running, the F-keys generate the corresponding PETSCII character code.

Key Function Comment

F1 LIST: Lists the current program

F2 SAVE"@: Press F2 and then type a filename to save your program. The @: instructs DOS to allow overwrite.

F3 LOAD " Load a file directly, or cursor up over a file listing and press F3 to load a program.

F4 40/80
Toggles between 40 and 80 column screen modes, clearing the screen. Pressing return is required

to prevent accidental mode switches.

F5 RUN: Run the current program.

F6 MONITOR Opens the Supermon machine language monitor.

F7 DOS"$<cr> Displays a directory listing.

F8 DOS" Issue DOS commands.

F9 -
Not defined. Formerly cycled through keyboard layouts. Instead, use the MENU command to enter

the X16 Control Panel, select one, and optionally save the layout as a boot preference.

Commander X16 Programmer's Reference Guide

- 15 -

F10 - Not defined

F11 - Not defined

F12 debug debug features in emulators

Commander X16 Programmer's Reference Guide

- 16 -

Chapter 3: BASIC Programming

Table of BASIC statements and functions

Keyword Type Summary Origin

ABS function Returns absolute value of a number C64

AND operator Returns boolean "AND" or bitwise intersection C64

ASC function Returns numeric PETSCII value from string C64

ATN function Returns arctangent of a number C64

BANK command Sets the RAM and ROM banks to use for PEEK, POKE, and SYS C128

BIN$ function Converts numeric to a binary string X16

BINPUT# command Reads a fixed-length block of data from an open file X16

BLOAD command Loads a headerless binary file from disk to a memory address X16

BOOT command Loads and runs AUTOBOOT.X16 X16

BSAVE command Saves a headerless copy of a range of memory to a file X16

BVERIFY command Verifies that a file on disk matches RAM contents X16

BVLOAD command Loads a headerless binary file from disk to VRAM X16

CHAR command Draws a text string in graphics mode X16

CHR$ function Returns PETSCII character from numeric value C64

CLOSE command Closes a logical file number C64

CLR command Clears BASIC variable state C64

CLS command Clears the screen X16

CMD command Redirects output to non-screen device C64

CONT command Resumes execution of a BASIC program C64

COLOR command Sets text fg and bg color X16

COS function Returns cosine of an angle in radians C64

DA$ variable Returns the date in YYYYMMDD format from the system clock X16

DATA command Declares one or more constants C64

DEF command Defines a function for use later in BASIC C64

DIM command Allocates storage for an array C64

DOS command Disk and SD card directory operations X16

END command Terminate program execution and return to READY. C64

EXP function Returns the inverse natural log of a number C64

Commander X16 Programmer's Reference Guide

- 17 -

FMCHORD command Start or stop simultaneous notes on YM2151 X16

FMDRUM command Plays a drum sound on YM2151 X16

FMFREQ command Plays a frequency in Hz on YM2151 X16

FMINIT command Stops sound and reinitializes YM2151 X16

FMINST command Loads a patch preset into a YM2151 channel X16

FMNOTE command Plays a musical note on YM2151 X16

FMPAN command Sets stereo panning on YM2151 X16

FMPLAY command Plays a series of notes on YM2151 X16

FMPOKE command Writes a value into a YM2151 register X16

FMVIB command Controls vibrato and tremolo on YM2151 X16

FMVOL command Sets channel volume on YM2151 X16

FN function Calls a previously defined function C64

FOR command Declares the start of a loop construct C64

FRAME command Draws an unfilled rectangle in graphics mode X16

FRE function Returns the number of unused BASIC bytes free C64

GEOS command Enter the GEOS GUI X16

GET command Polls the keyboard cache for a single keystroke C64

GET# command Polls an open logical file for a single character C64

GOSUB command Jumps to a BASIC subroutine C64

GOTO command Branches immediately to a line number C64

HELP command Displays a brief summary of online help resources X16

HEX$ function Converts numeric to a hexadecimal string X16

I2CPEEK function Reads a byte from a device on the I²C bus X16

I2CPOKE command Writes a byte to a device on the I²C bus X16

IF command Tests a boolean condition and branches on result C64

INPUT command Reads a line or values from the keyboard C64

INPUT# command Reads lines or values from a logical file C64

INT function Discards the fractional part of a number C64

JOY function Reads gamepad button state X16

KEYMAP command Changes the keyboard layout X16

LEFT$ function Returns a substring starting from the beginning of a string C64

LEN function Returns the length of a string C64

Commander X16 Programmer's Reference Guide

- 18 -

LET command Explicitly declares a variable C64

LINE command Draws a line in graphics mode X16

LINPUT command Reads a line from the keyboard X16

LINPUT# command Reads a line or other delimited data from an open file X16

LIST command Outputs the program listing to the screen C64

LOAD command Loads a program from disk into memory C64

LOCATE command Moves the text cursor to new location X16

LOG function Returns the natural logarithm of a number C64

MENU command Invokes the Commander X16 utility menu X16

MID$ function Returns a substring from the middle of a string C64

MON command Enters the machine language monitor X16

MOUSE command Hides or shows mouse pointer X16

MX/MY/MB variable Reads the mouse position and button state X16

NEW command Resets the state of BASIC and clears program memory C64

NEXT command Declares the end of a loop construct C64

NOT operator Bitwise or boolean inverse C64

OLD command Undoes a NEW command or warm reset X16

ON command A GOTO/GOSUB table based on a variable value C64

OPEN command Opens a logical file to disk or other device C64

OR operator Bitwise or boolean "OR" C64

PEEK function Returns a value from a memory address C64

π function Returns the constant for the value of pi C64

POINTER function Returns the address of a BASIC variable C128

POKE command Assigns a value to a memory address C64

POS function Returns the column position of the text cursor C64

POWEROFF command Immediately powers down the Commander X16 X16

PRINT command Prints data to the screen or other output C64

PRINT# command Prints data to an open logical file C64

PSET command Changes a pixel's color in graphics mode X16

PSGCHORD command Starts or stops simultaneous notes on VERA PSG X16

PSGFREQ command Plays a frequency in Hz on VERA PSG X16

PSGINIT command Stops sound and reinitializes VERA PSG X16

Commander X16 Programmer's Reference Guide

- 19 -

PSGNOTE command Plays a musical note on VERA PSG X16

PSGPAN command Sets stereo panning on VERA PSG X16

PSGPLAY command Plays a series of notes on VERA PSG X16

PSGVOL command Sets voice volume on VERA PSG X16

PSGWAV command Sets waveform on VERA PSG X16

READ command Assigns the next DATA constant to one or more variables C64

REBOOT command Performs a warm reboot of the system X16

RECT command Draws a filled rectangle in graphics mode X16

REM command Declares a comment C64

REN command Renumbers a BASIC program X16

RESET command Performs a hard reset of the system X16

RESTORE command Resets the READ pointer to a DATA constant C64

RETURN command Returns from a subroutine to the statement following a GOSUB C64

RIGHT$ function Returns a substring from the end of a string C64

RND function Returns a floating point number 0 <= n < 1 C64

RPT$ function Returns a string of repeated characters X16

RUN command Clears the variable state and starts a BASIC program C64

SAVE command Saves a BASIC program from memory to disk C64

SCREEN command Selects a text or graphics mode X16

SGN function Returns the sign of a numeric value C64

SIN function Returns the sine of an angle in radians C64

SLEEP command Introduces a delay in program execution X16

SPC function Returns a string with a set number of spaces C64

SQR function Returns the square root of a numeric value C64

ST variable Returns the status of certain DOS/peripheral operations C64

STEP keyword Used in a FOR declaration to declare the iterator step C64

STOP command Breaks out of a BASIC program C64

STR$ function Converts a numeric value to a string C64

STRPTR function Returns the address of a BASIC string X16

SYS command Transfers control to machine language at a memory address C64

TAB function Returns a string with spaces used for column alignment C64

TAN function Return the tangent for an angle in radians C64

Commander X16 Programmer's Reference Guide

- 20 -

THEN keyword Control structure as part of an IF statement C64

TI variable Returns the jiffy timer value C64

TI$ variable Returns the time HHMMSS from the system clock C64

TO keyword Part of the FOR loop declaration syntax C64

USR function Call a user-defined function in machine language C64

VAL function Parse a string to return a numeric value C64

VERIFY command Verify that a BASIC program was written to disk correctly C64

VPEEK function Returns a value from VERA's VRAM X16

VPOKE command Sets a value in VERA's VRAM X16

VLOAD command Loads a file to VERA's VRAM X16

WAIT command Waits for a memory location to match a condition C64

Commodore 64 Compatibility

The Commander X16 BASIC interpreter is 100% backwards-compatible with the Commodore 64 one. This includes the

following features:

All statements and functions

Strings, arrays, integers, floats

Max. 80 character BASIC lines

Printing control characters like cursor control and color codes, e.g.:

CHR$(147) : clear screen

CHR$(5) : white text

CHR$(18) : reverse

CHR$(14) : switch to upper/lowercase font

CHR$(142) : switch to uppercase/graphics font

The BASIC vector table ($0300-$030B, $0311/$0312)

SYS arguments in RAM

Because of the differences in hardware, the following functions and statements are incompatible between C64 and X16

BASIC programs.

POKE : write to a memory address

PEEK : read from a memory address

WAIT : wait for memory contents

SYS : execute machine language code (when used with ROM code)

The BASIC interpreter also currently shares all problems of the C64 version, like the slow garbage collector.

Saving Files

By default, you cannot automatically overwrite a file with SAVE, BSAVE, or OPEN. To overwrite a file, you must prefix the

filename with @: , like this: SAVE "@:HELLO WORLD" . ("@0:filename" is also acceptable.)

This follows the Commodore convention, which extended to all of their diskette drives and third party hard drives and flash

drive readers.

Always confirm you have successfully saved a file by checking the DOS status. When you use the SAVE command from

Immediate (or Direct) mode, the system does this for you. In Program mode, you have to do it yourself.

Commander X16 Programmer's Reference Guide

- 21 -

There are two ways to check the error channel from inside a program:

1. You can use the DOS command and make the user perform actions necessary to recover from an error (such as re-

saving the file with an @: prefix).

2. You can read the error yourself, using the following BASIC code:

10 OPEN 15,8,15

20 INPUT#15,A,B$

30 PRINT A;B$

40 CLOSE 15

Refer to Chapter 11 for more details on CMDR-DOS and the command channel.

New Statements and Functions

There are several new statement and functions. Note that all BASIC keywords (such as FOR) get converted into tokens

(such as $81), and the tokens for the new keywords have likely shifted from one ROM version to the next. Therefore,

loading BASIC program saved from an old revision of BASIC may mix up keywords. As of ROM version R42, the keyword

token positions should no longer shift and programs saved in R42 BASIC should be compatible with future versions.

ASC

TYPE: Integer Function

FORMAT: ASC(<string>)

Action: Returns an integer value representing the PETSCII code for the first character of string . If string is the empty

string, ASC() returns 0.

EXAMPLE of ASC Function:

?ASC("A")

 65

?ASC("")

 0

BIN$

TYPE: String Function

FORMAT: BIN$(n)

Action: Return a string representing the binary value of n. If n <= 255, 8 characters are returned and if 255 < n <= 65535,

16 characters are returned.

EXAMPLE of BIN$ Function:

PRINT BIN$(200) : REM PRINTS 11001000 AS BINARY REPRESENTATION OF 200

PRINT BIN$(45231) : REM PRINTS 1011000010101111 TO REPRESENT 16 BITS

BANK

TYPE: Command

FORMAT: BANK m[,n]

Action: Set the active RAM (m) and ROM bank (n) for the purposes of PEEK , POKE , and SYS . Specifying the ROM bank is

optional. If it is not specified, its previous value is retained.

Commander X16 Programmer's Reference Guide

- 22 -

EXAMPLE of BANK Statement:

BANK 1,10 : REM SETS THE RAM BANK TO 1 AND THE ROM BANK TO 10

?PEEK($A000) : REM PRINTS OUT THE VALUE STORED IN $A000 IN RAM BANK 1

SYS $C063 : REM CALLS ROUTINE AT $C09F IN ROM BANK 10 AUDIO (YM_INIT)

Note: In the above example, the SYS $C063 in ROM bank 10 is a call to ym_init , which does the first half of what the BASIC

command FMINIT does, without setting any default instruments. It is generally not recommended to call routines in ROM

directly this way, and most BASIC programmers will never have a need to call SYS directly, but advanced users may find a

good reason to do so.

Note: BANK uses its own register to store the the command's desired bank numbers; this will not always be the same as the

value stored in $00 or $01 . In fact, $01 is always going to read 4 when PEEKing from BASIC. If you need to know the

currently selected RAM and/or RAM banks, you should explicitly set them and use variables to track your selected bank

number(s).

Note: Memory address $00 , which is the hardware RAM bank register, will usually report the bank set by the BANK

command. The one exception is after a BLOAD or BVERIFY inside of a running BASIC program. At this point you can check

PEEK(0) to learn the bank that BLOAD , or BVERIFY stopped at.

BINPUT#

TYPE: Command

FORMAT: BINPUT# <n>,<var$>,<len>

Action: BINPUT# Reads a block of data from an open file and stores the data into a string variable. If there are fewer than

<len> bytes available to be read from the file, fewer bytes will be stored. If the end of the file is reached, ST AND 64 will

be true.

EXAMPLE of BINPUT# Statement:

10 OPEN 8,8,8,"FILE.BIN,S,R"

20 BINPUT#8,A$,10

30 PRINT "I GOT";LEN(A$);"BYTES"

40 IF ST<>0 THEN 20

50 CLOSE 8

BOOT

TYPE: Command

FORMAT: BOOT

Action: Load and run a PRG file named AUTOBOOT.X16 from device 8. If the file is not found, nothing is done and no error is

printed.

EXAMPLE of BOOT Statement:

BOOT

BLOAD

TYPE: Command

FORMAT: BLOAD <filename>, <device>, <bank>, <address>

Action: Loads a binary file directly into RAM, advancing the RAM bank if necessary. This does not change the active RAM

bank as controlled by the BANK command, but after this command, the value in memory location $00 will point to the

Commander X16 Programmer's Reference Guide

- 23 -

bank in which the next byte would have been loaded.

EXAMPLES of BLOAD:

BLOAD "MYFILE.BIN",8,1,$A000:REM LOADS A FILE NAMED MYFILE.BIN FROM DEVICE 8 STARTING IN BANK 1 AT

$A000.

BLOAD "WHO.PCX",8,10,$B000:REM LOADS A FILE NAMED WHO.PCX INTO RAM STARTING IN BANK 10 AT $B000.

BSAVE

TYPE: Command

FORMAT: BSAVE <filename>, <device>, <bank>, <start address>, <end address>

Action: Saves a region of memory to a binary file.

Note: The save will stop one byte before end address .

This command does not allow for automatic bank advancing, but you can achieve a similar result with successive BSAVE

invocations to append additional memory locations to the same file.

EXAMPLES of BSAVE:

BSAVE "MYFILE.BIN",8,1,$A000,$C000

The above example saves a region of memory from $A000 in bank 1 through and including $BFFF, stopping before $C000.

BSAVE "MYFILE.BIN,S,A",8,2,$A000,$B000

The above example appends a region of memory from $A000 through and including $AFFF, stopping before $B000. Running

both of the above examples in succession will result in a file MYFILE.BIN 12KiB in size.

BVLOAD

TYPE: Command

FORMAT: BVLOAD <filename>, <device>, <VERA_high_address>, <VERA_low_address>

Action: Loads a binary file directly into VERA RAM.

EXAMPLES of BVLOAD:

BVLOAD "MYFILE.BIN", 8, 0, $4000 :REM LOADS MYFILE.BIN FROM DEVICE 8 TO VRAM $4000.

BVLOAD "MYFONT.BIN", 8, 1, $F000 :REM LOAD A FONT INTO THE DEFAULT FONT LOCATION ($1F000).

CHAR

TYPE: Command

FORMAT: CHAR <x>,<y>,<color>,<string>

Action: This command draws a text string on the graphics screen in a given color.

The string can contain printable ASCII characters (CHR$($20) to CHR$($7E)), as well most PETSCII control codes.

EXAMPLE of CHAR Statement:

10 SCREEN $80

20 A$="The quick brown fox jumps over the lazy dog."

24 CHAR 0,6,0,A$

Commander X16 Programmer's Reference Guide

- 24 -

30 CHAR 0,6+12,0,CHR$($04)+A$:REM UNDERLINE

40 CHAR 0,6+12*2,0,CHR$($06)+A$:REM BOLD

50 CHAR 0,6+12*3,0,CHR$($0B)+A$:REM ITALICS

60 CHAR 0,6+12*4,0,CHR$($0C)+A$:REM OUTLINE

70 CHAR 0,6+12*5,0,CHR$($12)+A$:REM REVERSE

CLS

TYPE: Command

FORMAT: CLS

Action: Clears the screen. Same effect as ?CHR$(147); .

EXAMPLE of CLS Statement:

CLS

COLOR

TYPE: Command

FORMAT: COLOR <fgcol>[,<bgcol>]

Action: This command works sets the text mode foreground color, and optionally the background color.

EXAMPLES of COLOR Statement:

COLOR 2 : REM SET FG COLOR TO RED, KEEP BG COLOR

COLOR 2,0 : REM SET FG COLOR TO RED, BG COLOR TO BLACK

DOS

TYPE: Command

FORMAT: DOS <string>

Action: This command works with the command/status channel or the directory of a Commodore DOS device and has

different functionality depending on the type of argument.

Without an argument, DOS prints the status string of the current device.

With a string argument of "8" or "9" , it switches the current device to the given number.

With an argument starting with "$" , it shows the directory of the device.

Any other argument will be sent as a DOS command.

EXAMPLES of DOS Statement:

DOS"$" : REM SHOWS DIRECTORY

DOS"S:BAD_FILE" : REM DELETES "BAD_FILE"

DOS : REM PRINTS DOS STATUS, E.G. "01,FILES SCRATCHED,01,00"

FMCHORD

TYPE: Command

FORMAT: FMCHORD <first channel>,<string>

Action: This command uses the same syntax as FMPLAY , but instead of playing a series of notes, it will start all of the

notes in the string simultaneously on one or more channels. The first parameter to FMCHORD is the first channel to use, and

Commander X16 Programmer's Reference Guide

- 25 -

will be used for the first note in the string, and subsequent notes in the string will be started on subsequent channels, with

the channel after 7 being channel 0.

All macros are supported, even the ones that only affect the behavior of PSGPLAY and FMPLAY .

The full set of macros is documented here .

EXAMPLE of FMCHORD statement:

10 FMINIT

20 FMVIB 195,10

30 FMINST 1,16:FMINST 2,16:FMINST 3,16 : REM ORGAN

40 FMVOL 1,50:FMVOL 2,50:FMVOL 3,50 : REM MAKE ORGAN QUIETER

50 FMINST 0,11 : REM VIBRAPHONE

60 FMCHORD 1,"O3CG>E T90" : REM START SOME ORGAN CHORDS (CHANNELS 1,2,3)

70 FMPLAY 0,"O4G4.A8G4E2." : REM PLAY MELODY (CHANNEL 0)

80 FMPLAY 0,"O4G4.A8G4E2."

90 FMCHORD 1,"O2G>DB" : REM SWITCH ORGAN CHORDS (CHANNELS 1,2,3)

100 FMPLAY 0,"O5D2D4<B2" : REM PLAY MORE MELODY

110 FMCHORD 1,"O2F" : REM SWITCH ONE OF THE ORGAN CHORD NOTES

120 FMPLAY 0,"R4" : REM PAUSE FOR THE LENGTH OF ONE QUARTER NOTE

130 FMCHORD 1,"O3CEG" : REM SWITCH ALL THREE CHORD NOTES

140 FMPLAY 0,"O5C2C4<G2." : REM PLAY THE REST OF THE MELODY

150 FMCHORD 1,"RRR" : REM RELEASE THE CHANNELS THAT ARE PLAYING THE CHORD

This will play the first few lines of Silent Night with a vibraphone lead and organ accompaniment.

FMDRUM

TYPE: Command

FORMAT: FMDRUM <channel>,<drum number>

Action: Loads a drum preset onto the YM2151 and triggers it. Valid range is from 25 to 87, corresponding to the General

MIDI percussion note values. FMDRUM will load a patch preset corresponding to the selected drum into the channel. If you

then try to play notes on that same channel without loading an instrument patch, it will use the drum patch that was loaded

for the drum sound instead, which may not sound particularly musical.

FMFREQ

TYPE: Command

FORMAT: FMFREQ <channel>,<frequency>

Action: Play a note by frequency on the YM2151. The accepted range is in Hz from 17 to 4434. FMFREQ also accepts a

frequency of 0 to release the note.

EXAMPLE of FMFREQ statement:

0 FMINST 0,160 : REM LOAD PURE SINE PATCH

10 FMINST 1,160 : REM HERE TOO

20 FMFREQ 0,350 : REM PLAY A SINE WAVE AT 350 HZ

30 FMFREQ 1,440 : REM PLAY A SINE WAVE AT 440 HZ ON ANOTHER CHANNEL

40 FOR X=1 TO 10000 : NEXT X : REM DELAY A BIT

50 FMFREQ 0,0 : FMFREQ 1,0 : REM RELEASE BOTH CHANNELS

The above BASIC program plays a sound similar to a North American dial tone for a few seconds.

FMINIT

Commander X16 Programmer's Reference Guide

- 26 -

TYPE: Command

FORMAT: FMINIT

Action: Initialize YM2151, silence all channels, and load a set of default patches into all 8 channels.

FMINST

TYPE: Command

FORMAT: FMINST <channel>,<patch>

Load an instrument onto the YM2151 in the form of a patch preset into a channel. Valid channels range from 0 to 7. Valid

patches range from 0 to 162.

FMNOTE

TYPE: Command

FORMAT: FMNOTE <channel>,<note>

Action: Play a note on the YM2151. The note value is constructed as follows. Using hexadecimal notation, the first nybble is

the octave, 0-7, and the second nybble is the note within the octave as follows:

$x0 $x1 $x2 $x3 $x4 $x5 $x6 $x7 $x8 $x9 $xA $xB $xC $xD-$xF

Release C C♯/D♭ D D♯/E♭ E F F♯/G♭ G G♯/A♭ A A♯/B♭ B no-op

Notes can also be represented by negative numbers to skip retriggering, and will thus snap to another note without

restarting the playback of the note.

EXAMPLE of FMNOTE statement:

0 FMINST 1,64 : REM LOAD SOPRANO SAX

10 FMNOTE 1,$4A : REM PLAYS CONCERT A

20 FOR X=1 TO 5000 : NEXT X : REM DELAYS FOR A BIT

30 FMNOTE 1,0 : REM RELEASES THE NOTE

40 FOR X=1 TO 1000 : NEXT X : REM DELAYS FOR A BIT

50 FMNOTE 1,$3A : REM PLAYS A IN THE 3RD OCTAVE

60 FOR X=1 TO 2500 : NEXT X : REM SHORT DELAY

70 FMNOTE 1,-$3B : REM UP A HALF STEP TO A# WITHOUT RETRIGGERING

80 FOR X=1 TO 2500 : NEXT X : REM SHORT DELAY

90 FMNOTE 1,0 : REM RELEASES THE NOTE

FMPAN

TYPE: Command

FORMAT: FMPAN <channel>,<panning>

Action: Sets the simple stereo panning on a YM2151 channel. Valid values are as follows:

1 = left

2 = right

3 = both

FMPLAY

TYPE: Command

FORMAT: FMPLAY <channel>,<string>

Action: This command is very similar to PLAY on other BASICs such as GWBASIC. It takes a string of notes, rests, tempo

changes, note lengths, and other macros, and plays all of the notes synchronously. That is, the FMPLAY command will not

Commander X16 Programmer's Reference Guide

- 27 -

return control until all of the notes and rests in the string have been fully played.

The full set of macros is documented here .

EXAMPLE of FMPLAY statement:

10 FMINIT : REM INITIALIZE AND LOAD DEFAULT PATCHES, WILL USE E.PIANO

20 FMPLAY 1,"T90 O4 L4" : REM TEMPO 90 BPM, OCTAVE 4, NOTE LENGTH 4 (QUARTER)

30 FMPLAY 1,"CDECCDECEFGREFGR" : REM FIRST TWO LINES OF TUNE

40 FMPLAY 1,"G8A8G8F8EC G8A8G8F8EC" : REM THIRD LINE

50 FMPLAY 1,"C<G>CRC<G>CR" : REM FOURTH LINE

FMPOKE

TYPE: Command

FORMAT: FMPOKE <register>,<value>

Action: This command uses the AUDIO API to write a value to one of the the YM2151's registers at a low level.

EXAMPLE of FMPOKE statement:

10 FMINIT

20 FMPOKE $28,$4A : REM SET KC TO A4 (A-440) ON CHANNEL 0

30 FMPOKE $08,$00 : REM RELEASE CHANNEL 0

40 FMPOKE $08,$78 : REM START NOTE PLAYBACK ON CHANNEL 0 W/ ALL OPERATORS

FMVIB

TYPE: Command

FORMAT: FMVIB <speed>,<depth>

Action: This command sets the LFO speed and the phase and amplitude modulation depth values on the YM2151. The

speed value ranges from 0 to 255, and corresponds to an LFO frequency from 0.008 Hz to 32.6 Hz. The depth value ranges

from 0-127 and affects both AMD and PMD.

Only some patch presets (instruments) are sensitive to the LFO. Those are marked in this table with the † symbol. The LFO

affects all channels equally, and it depends on the instrument as to whether it is affected.

Good values for most instruments are speed somewhere between 190-220. A good light vibrato for most wind instruments

would have a depth of 10-15, while tremolo instruments like the Vibraphone or Tremolo Strings are most realistic around 20-

30.

EXAMPLE of FMVIB statement:

10 FMVIB 200,30

20 FMINST 0,11 : REM VIBRAPHONE

30 FMPLAY 0,"T60 O4 CDEFGAB>C"

40 FMVIB 0,0

50 FMPLAY 0,"C<BAGFEDC"

The above BASIC program plays a C major scale with a vibraphone patch, first with a vibrato/tremolo effect, and then plays

the scale in reverse with the vibrato turned off.

FMVOL

TYPE: Command

FORMAT: FMVOL <channel>,<volume>

Commander X16 Programmer's Reference Guide

- 28 -

Action: This command sets the channel's volume. The volume remains at the requested level until another FMVOL

command for that channel or FMINIT is called. Valid range is from 0 (completely silent) to 63 (full volume)

FRAME

TYPE: Command

FORMAT: FRAME <x1>,<y1>,<x2>,<y2>,<color>

Action: This command draws a rectangle frame on the graphics screen in a given color.

EXAMPLE of FRAME Statement:

10 SCREEN$80

20 FORI=1TO20:FRAMERND(1)*320,RND(1)*200,RND(1)*320,RND(1)*200,RND(1)*128:NEXT

30 GOTO20

GEOS

TYPE: Command

FORMAT: GEOS

Action: Enter the GEOS UI.

HEX$

TYPE: String Function

FORMAT: HEX$(n)

Action: Return a string representing the hexadecimal value of n. If n <= 255, 2 characters are returned and if 255 < n <=

65535, 4 characters are returned.

EXAMPLE of HEX$ Function:

PRINT HEX$(200) : REM PRINTS C8 AS HEXADECIMAL REPRESENTATION OF 200

PRINT HEX$(45231) : REM PRINTS B0AF TO REPRESENT 16 BIT VALUE

HELP

TYPE: Command

FORMAT: HELP

Action: The HELP command displays a brief summary of the ROM build, and points users to this guide at its home on

GitHub, and to the community forums website.

I2CPEEK

TYPE: Integer Function

FORMAT: I2CPEEK(<device>,<register>)

Action: Returns the value from a register on an I²C device.

EXAMPLE of I2CPEEK Function:

PRINT HEX$(I2CPEEK($6F,0) AND $7F)

This command reports the seconds counter from the RTC by converting its internal BCD representation to a string.

Commander X16 Programmer's Reference Guide

- 29 -

I2CPOKE

TYPE: Command

FORMAT: I2CPOKE <device>,<register>,<value>

Action: Sets the value to a register on an I²C device.

EXAMPLE of I2CPOKE Function:

I2CPOKE $6F,$40,$80

This command sets a byte in NVRAM on the RTC to the value $80

JOY

TYPE: Integer Function

FORMAT: JOY(n)

Action: Return the state of a joystick.

JOY(1) through JOY(4) return the state of SNES controllers connected to the system, and JOY(0) returns the state of

the "keyboard joystick", a set of keyboard keys that map to the SNES controller layout. See joystick_get for details.

If no controller is connected to the SNES port (or no keyboard is connected), the function returns -1. Otherwise, the result is

a bit field, with pressed buttons OR ed together:

Value Button

$800 A

$400 X

$200 L

$100 R

$080 B

$040 Y

$020 SELECT

$010 START

$008 UP

$004 DOWN

$002 LEFT

$001 RIGHT

Note that this bitfield is different from the joystick_get KERNEL API one. Also note that the keyboard joystick will allow

LEFT and RIGHT as well as UP and DOWN to be pressed at the same time, while controllers usually prevent this

mechanically.

EXAMPLE of JOY Function:

10 REM DETECT CONTROLLER, FALL BACK TO KEYBOARD

20 J = 0: FOR I=1 TO 4: IF JOY(I) >= 0 THEN J = I: GOTO40

Commander X16 Programmer's Reference Guide

- 30 -

30 NEXT

40 :

50 V=JOY(J)

60 PRINT CHR$(147);V;": ";

70 IF V = -1 THEN PRINT"DISCONNECTED ": GOTO50

80 IF V AND 8 THEN PRINT"UP ";

90 IF V AND 4 THEN PRINT"DOWN ";

100 IF V AND 2 THEN PRINT"LEFT ";

110 IF V AND 1 THEN PRINT"RIGHT ";

120 GOTO50

KEYMAP

TYPE: Command

FORMAT: KEYMAP <string>

Action: This command sets the current keyboard layout. It can be put into an AUTOBOOT file to always set the keyboard

layout on boot.

EXAMPLE of KEYMAP Statement:

10 KEYMAP"SV-SE" :REM SMALL BASIC PROGRAM TO SET LAYOUT TO SWEDISH/SWEDEN

SAVE"AUTOBOOT.X16" :REM SAVE AS AUTOBOOT FILE

LINE

TYPE: Command

FORMAT: LINE <x1>,<y1>,<x2>,<y2>,<color>

Action: This command draws a line on the graphics screen in a given color.

EXAMPLE of LINE Statement:

10 SCREEN128

20 FORA=0TO2*πSTEP2*π/200

30 : LINE100,100,100+SIN(A)*100,100+COS(A)*100

40 NEXT

If you're pasting this example into the Commander X16 emulator, use this code block instead so that the π

symbol is properly received.

10 SCREEN128

20 FORA=0TO2*\XFFSTEP2*\XFF/200

30 : LINE100,100,100+SIN(A)*100,100+COS(A)*100

40 NEXT

LINPUT

TYPE: Command

**FORMAT: LINPUT <var$>

Action: LINPUT Reads a line of data from the keyboard and stores the data into a string variable. Unlike INPUT , no

parsing or cooking of the input is done, and therefore quotes, commas, and colons are stored in the string as typed. No

prompt is displayed, either.

Commander X16 Programmer's Reference Guide

- 31 -

The input is taken from the KERNAL editor, hence the user will have the freedom of all of the features of the editor such as

cursor movement, mode switching, and color changing.

Due to how the editor works, an empty line will return " " – a string with a single space, and trailing spaces are not

preserved.

EXAMPLE of LINPUT Statement:

10 LINPUT A$

20 IF A$=" " THEN 50

30 PRINT "YOU TYPED: ";A$

40 END

50 PRINT "YOU TYPED AN EMPTY STRING: ";A$

LINPUT#

TYPE: Command

FORMAT: LINPUT# <n>,<var$>[,<delimiter>]

Action: LINPUT# Reads a line of data from an open file and stores the data into a string variable. The delimiter of a line by

default is 13 (carriage return). The delimiter is not part of the stored value. If the end of the file is reached while reading, ST

AND 64 will be true.

LINPUT# can be used to read structured data from files. It can be particularly useful to extract quoted or null-terminated

strings from files while reading.

EXAMPLE of LINPUT# Statement:

10 I=0

20 OPEN 1,8,0,"$"

30 LINPUT#1,A$,$22

40 IF ST<>0 THEN 130

50 LINPUT#1,A$,$22

60 IF I=0 THEN 90

70 PRINT "ENTRY: ";

80 GOTO 100

90 PRINT "LABEL: ";

100 PRINT CHR$($22);A$;CHR$($22)

110 I=I+1

120 IF ST=0 THEN 30

130 CLOSE 1

The above example parses and prints out the filenames from a directory listing.

LOCATE

TYPE: Command

FORMAT: LOCATE <line>[,<column>]

Action: This command positions the text mode cursor at the given location. The values are 1-based. If no column is given,

only the line is changed.

EXAMPLE of LOCATE Statement:

100 REM DRAW CIRCLE ON TEXT SCREEN

110 SCREEN0

Commander X16 Programmer's Reference Guide

- 32 -

120 R=25

130 X0=40

140 Y0=30

150 FORT=0TO360STEP1

160 : X=X0+R*COS(T)

170 : Y=Y0+R*SIN(T)

180 : LOCATEY,X:PRINTCHR$($12);" ";

190 NEXT

MENU

TYPE: Command

FORMAT: MENU

Action: This command currently invokes the Commander X16 Control Panel. In the future, the menu may instead present a

menu of ROM-based applications and routines.

EXAMPLE of MON Statement:

MENU

MON

TYPE: Command

FORMAT: MON (Alternative: MONITOR)

Action: This command enters the machine language monitor. See the dedicated chapter for a description.

EXAMPLE of MON Statement:

MON

MONITOR

MOUSE

TYPE: Command

FORMAT: MOUSE <mode>

Action: This command configures the mouse pointer.

Mode Description

0 Hide mouse

1 Show mouse, set default mouse pointer

-1 Show mouse, don't configure mouse cursor

MOUSE 1 turns on the mouse pointer and MOUSE 0 turns it off. If the BASIC program has its own mouse pointer sprite

configured, it can use MOUSE -1 , which will turn the mouse pointer on, but not set the default pointer sprite.

The size of the mouse pointer's area will be configured according to the current screen mode. If the screen mode is

changed, the MOUSE statement has to be repeated.

EXAMPLES of MOUSE Statement:

Commander X16 Programmer's Reference Guide

- 33 -

MOUSE 1 : REM ENABLE MOUSE

MOUSE 0 : REM DISABLE MOUSE

MX/MY/MB

TYPE: System variable

FORMAT: MX

FORMAT: MY

FORMAT: MB

Action: Return the horizontal (MX) or vertical (MY) position of the mouse pointer, or the mouse button state (MB).

MB returns the sum of the following values depending on the state of the buttons:

Value Button

0 none

1 left

2 right

4 third

EXAMPLE of MX/MY/MB variables:

REM SIMPLE DRAWING PROGRAM

10 SCREEN$80

20 MOUSE1

25 OB=0

30 TX=MX:TY=MY:TB=MB

35 IFTB=0GOTO25

40 IFOBTHENLINEOX,OY,TX,TY,16

50 IFOB=0THENPSETTX,TY,16

60 OX=TX:OY=TY:OB=TB

70 GOTO30

OLD

TYPE: Command

FORMAT: OLD

Action: This command recovers the BASIC program in RAM that has been previously deleted using the NEW command or

through a RESET.

EXAMPLE of OLD Statement:

OLD

POINTER

TYPE: Function

FORMAT: POINTER(<variable>)

Action: Returns the memory address of the internal structure representing a BASIC variable.

EXAMPLE of POINTER function:

Commander X16 Programmer's Reference Guide

- 34 -

10 A$="MOO"

20 PRINT HEX$(POINTER(A$))

RUN

0823

POWEROFF

TYPE: Command

FORMAT: POWEROFF

Action: This command instructs the SMC to power down the system. This is equivalent to pressing the physical power

switch.

EXAMPLE of POWEROFF Statement:

POWEROFF

PSET

TYPE: Command

FORMAT: PSET <x>,<y>,<color>

Action: This command sets a pixel on the graphics screen to a given color.

EXAMPLE of PSET Statement:

10 SCREEN$80

20 FORI=1TO20:PSETRND(1)*320,RND(1)*200,RND(1)*256:NEXT

30 GOTO20

PSGCHORD

TYPE: Command

FORMAT: PSGCHORD <first voice>,<string>

Action: This command uses the same syntax as PSGPLAY , but instead of playing a series of notes, it will start all of the

notes in the string simultaneously on one or more voices. The first parameter to PSGCHORD is the first voice to use, and will

be used for the first note in the string, and subsequent notes in the string will be started on subsequent voices, with the

voice after 15 being voice 0.

All macros are supported, even the ones that only affect PSGPLAY and FMPLAY .

The full set of macros is documented here .

EXAMPLE of PSGCHORD statement:

10 PSGINIT

20 PSGCHORD 15,"O3G>CE" : REM STARTS PLAYING A CHORD ON VOICES 15, 0, AND 1

30 PSGPLAY 14,">C<DGB>CDE" : REM PLAYS A SERIES OF NOTES ON VOICE 14

40 PSGCHORD 15,"RRR" : REM RELEASES CHORD ON VOICES 15, 0, AND 1

50 PSGPLAY 14,"O4CAG>C<A" : REM PLAYS A SERIES OF NOTES ON VOICE 14

60 PSGCHORD 0,"O3A>CF" : REM STARTS PLAYING A CHORD ON VOICES 0, 1, AND 2

70 PSGPLAY 14,"L16FGAB->CDEF4" : REM PLAYS A SERIES OF NOTES ON VOICE

80 PSGCHORD 0,"RRR" : REM RELEASES CHORD ON VOICES 0, 1, AND 2

Commander X16 Programmer's Reference Guide

- 35 -

PSGFREQ

TYPE: Command

FORMAT: PSGFREQ <voice>,<frequency>

Action: Play a note by frequency on the VERA PSG. The accepted range is in Hz from 1 to 24319. PSGFREQ also accepts a

frequency of 0 to release the note.

EXAMPLE of PSGFREQ statement:

10 PSGINIT : REM RESET ALL VOICES TO SQUARE WAVEFORM

20 PSGFREQ 0,350 : REM PLAY A SQUARE WAVE AT 350 HZ

30 PSGFREQ 1,440 : REM PLAY A SQUARE WAVE AT 440 HZ ON ANOTHER VOICE

40 FOR X=1 TO 10000 : NEXT X : REM DELAY A BIT

50 PSGFREQ 0,0 : PSGFREQ 1,0 : REM RELEASE BOTH VOICES

The above BASIC program plays a sound similar to a North American dial tone for a few seconds.

PSGINIT

TYPE: Command

FORMAT: PSGINIT

Action: Initialize VERA PSG, silence all voices, set volume to 63 on all voices, and set the waveform to pulse and the duty

cycle to 63 (50%) for all 16 voices.

PSGNOTE

TYPE: Command

FORMAT: PSGNOTE <voice>,<note>

Action: Play a note on the VERA PSG. The note value is constructed as follows. Using hexadecimal notation, the first nybble

is the octave, 0-7, and the second nybble is the note within the octave as follows:

$x0 $x1 $x2 $x3 $x4 $x5 $x6 $x7 $x8 $x9 $xA $xB $xC $xD-$xF

Release C C♯/D♭ D D♯/E♭ E F F♯/G♭ G G♯/A♭ A A♯/B♭ B no-op

EXAMPLE of PSGNOTE statement:

10 PSGNOTE 1,$4A : REM PLAYS CONCERT A

20 FOR X=1 TO 5000 : NEXT X : REM DELAYS FOR A BIT

30 PSGNOTE 1,0 : REM RELEASES THE NOTE

40 FOR X=1 TO 2500 : NEXT X : REM SHORT DELAY

50 PSGNOTE 1,$3A : REM PLAYS A IN THE 3RD OCTAVE

60 FOR X=1 TO 2500 : NEXT X : REM SHORT DELAY

70 PSGNOTE 1,0 : REM RELEASES THE NOTE

PSGPAN

TYPE: Command

FORMAT: PSGPAN <voice>,<panning>

Action: Sets the simple stereo panning on a VERA PSG voice. Valid values are as follows:

1 = left

2 = right

Commander X16 Programmer's Reference Guide

- 36 -

3 = both

PSGPLAY

TYPE: Command

FORMAT: PSGPLAY <voice>,<string>

Action: This command is very similar to PLAY on other BASICs such as GWBASIC. It takes a string of notes, rests, tempo

changes, note lengths, and other macros, and plays all of the notes synchronously. That is, the PSGPLAY command will not

return control until all of the notes and rests in the string have been fully played.

The full set of macros is documented here .

EXAMPLE of PSGPLAY statement:

10 PSGWAV 0,31 : REM PULSE, 25% DUTY

20 PSGPLAY 0,"T180 S0 O5 L32" : REM TEMPO 180 BPM, LEGATO, OCTAVE 5, 32ND NOTES

30 PSGPLAY 0,"C<G>CEG>C<G<A-"

40 PSGPLAY 0,">CE-A-E-A->CE-A-"

50 PSGPLAY 0,"E-<<B->DFB-FB->DFB-F" : REM GRAB YOURSELF A MUSHROOM

PSGVOL

TYPE: Command

FORMAT: PSGVOL <voice>,<volume>

Action: This command sets the voice's volume. The volume remains at the requested level until another PSGVOL

command for that voice or PSGINIT is called. Valid range is from 0 (completely silent) to 63 (full volume).

PSGWAV

TYPE: Command

FORMAT: PSGWAV <voice>,<w>

Action: Sets the waveform and duty cycle for a PSG voice.

w = 0-63 -> Pulse: Duty cycle is (w+1)/128 . A value of 63 means 50% duty.

w = 64-127 -> Sawtooth (all values have identical effect)

w = 128-191 -> Triangle (all values have identical effect)

w = 192-255 -> Noise (all values have identical effect)

EXAMPLE of PSGWAV Statement:

10 FOR O=$20 TO $50 STEP $10:REM OCTAVE LOOP

20 FOR N=1 TO 11 STEP 2:REM NOTE LOOP, EVERY OTHER NOTE

30 PSGNOTE 0,O+N:REM START PLAYBACK OF THE NOTE

40 FOR P=0 TO 30:REM PULSE WIDTH MODULATION LOOP (INCREASING DUTY)

50 PSGWAV 0,P:REM SET PW

60 FOR D=1 TO 30:NEXT D:REM DELAY LOOP

70 NEXT P

80 PSGNOTE 0,O+N+1:REM START PLAYBACK OF THE NOTE + A SEMITONE

90 FOR P=31 TO 1 STEP -1:REM PWM LOOP (DECREASING DUTY)

100 PSGWAV 0,P:REM SET PW

110 FOR D=1 TO 30:NEXT D:REM DELAY LOOP

120 NEXT P

130 NEXT N

Commander X16 Programmer's Reference Guide

- 37 -

140 NEXT O

150 PSGNOTE 0,0:REM STOP SOUND

This example plays a chromatic scale while applying pulse-width modulation on the voice.

RECT

TYPE: Command

FORMAT: RECT <x1>,<y1>,<x2>,<y2>,<color>

Action: This command draws a solid rectangle on the graphics screen in a given color.

EXAMPLE of RECT Statement:

10 SCREEN$80

20 FORI=1TO20:RECTRND(1)*320,RND(1)*200,RND(1)*320,RND(1)*200,RND(1)*256:NEXT

30 GOTO20

REBOOT

TYPE: Command

FORMAT: REBOOT

Action: Performs a software reset of the system by calling the ROM reset vector.

EXAMPLE of REBOOT Statement:

REBOOT

REN

TYPE: Command

FORMAT: REN [<new line num>[, <increment>[, <first old line num>]]]

Action: Renumbers a BASIC program while updating the line number arguments of GOSUB, GOTO, RESTORE, RUN, and

THEN.

Optional arguments:

The line number of the first line after renumbering, default: 10

The value of the increment for subsequent lines, default 10

The earliest old line to start renumbering at, default: 0

THIS STATEMENT IS EXPERIMENTAL. Please ensure your have saved your program before using this command to

renumber.

EXAMPLE of REN Statement:

10 PRINT "HELLO"

20 DATA 1,2,3

30 DATA 4,5,6

40 READ X

50 PRINT X

60 RESTORE 30

70 READ X

80 PRINT X

90 GOTO 10

Commander X16 Programmer's Reference Guide

- 38 -

REN 100,5

LIST

100 PRINT "HELLO"

105 DATA 1,2,3

110 DATA 4,5,6

115 READ X

120 PRINT X

125 RESTORE 110

130 READ X

135 PRINT X

140 GOTO 100

READY.

RESET

TYPE: Command

FORMAT: RESET

Action: This command instructs the SMC to assert the reset line on the system, which performs a hard reset. This is

equivalent to pressing the physical reset switch.

EXAMPLE of RESET Statement:

RESET

RESTORE

TYPE: Command

FORMAT: RESTORE [<linenum>]

Action: This command resets the pointer for the READ command. Without arguments, it will reset the pointer to the first

DATA constant in the program. With a parameter linenum , the command will reset the pointer to the first DATA constant

at or after that line number.

EXAMPLE of RESTORE Statement:

10 DATA 1,2,3

20 DATA 4,5,6

30 READ Y

40 PRINT Y

50 RESTORE 20

60 READ Y

70 PRINT Y

This program will output the number 1 followed by the number 4.

RPT$

TYPE: Function

FORMAT: RPT$(<byte>,<count>)

Action: Returns a string of <count> instances of the PETSCII character represented by the numeric value <byte>. This

function is similar in behavior to CHR$() but takes a second argument as a repeat count.

Commander X16 Programmer's Reference Guide

- 39 -

RPT$(A,1) is functionally equivalent to CHR$(A) .

EXAMPLE of RPT$ function:

10 REM TEN EXCLAMATION MARKS

20 PRINT RPT$(33,10)

READY.

RUN

!!!!!!!!!!

READY.

SCREEN

TYPE: Command

FORMAT: SCREEN <mode>

Action: This command switches screen modes.

For a list of supported modes, see Chapter 2: Editor . The value of -1 toggles between modes $00 and $03.

EXAMPLE of SCREEN Statement:

SCREEN 3 : REM SWITCH TO 40 CHARACTER MODE

SCREEN 0 : REM SWITCH TO 80 CHARACTER MODE

SCREEN -1 : REM SWITCH BETWEEN 40 and 80 CHARACTER MODE

SLEEP

TYPE: Command

FORMAT: SLEEP [<jiffies>]

Action: With the default interrupt source configured and enabled, this command waits for jiffies +1 VSYNC events and

then resumes program execution. In other words, SLEEP with no arguments is equivalent to SLEEP 0 , which waits until

the beginning of the next frame. Another useful example, SLEEP 60 , pauses for approximately 1 second.

Allowed values for jiffies is from 0 to 65535, inclusive.

EXAMPLE of SLEEP Statement:

10 FOR I=1 TO 10

20 PRINT I

30 SLEEP 60

40 NEXT

STRPTR

TYPE: Function

FORMAT: STRPTR(<variable>)

Action: Returns the memory address of the first character of a string contained within a string variable. If the string

variable has zero length, this function will likely still return a non-zero value pointing either to the close quotation mark in

the literal assignment, or to somewhere undefined in string memory. Programs should check the LEN() of string variables

before using the pointer returned from STRPTR .

EXAMPLE of STRPTR function:

Commander X16 Programmer's Reference Guide

- 40 -

10 A$="MOO"

20 P=STRPTR(A$)

30 FOR I=0 TO LEN(A$)-1

40 PRINT CHR$(PEEK(P+I));

50 NEXT

60 A$=""

70 P=STRPTR(A$)

80 FOR I=0 TO LEN(A$)-1 : REM THIS LOOP WILL STILL ALWAYS HAPPEN ONCE

90 PRINT CHR$(PEEK(P+I));

100 NEXT

RUN

MOO"

READY.

In this case, the pointer returned on line 70 pointed to the first character after the open quote on line 60. Since it was an

empty string, the pointer ended up pointing to the close quote. To avoid this scenario, we should have checked the

LEN(A$) before line 80 and skipped over the loop.

SYS

TYPE: Command

FORMAT: SYS <address>

Action: The SYS command executes a machine language subroutine located at <address>. Execution continues until an

RTS is executed, and control returns to the BASIC program.

In order to communicate with the routine, you can pre-load the CPU registers by using POKE to write to the following

memory locations:

$030C : Accumulator

$030D : X Register

$030E : Y Register

$030F : Status Register/Flags

When the routine is over, the CPU registers will be loaded back in to these locations. So you can read the results of a

machine language routine by PEEKing these locations.

EXAMPLE of SYS statemet:

Push a <CR> into the keyboard buffer.

POKE $30C,13

SYS $FEC3

Run the Machine Language Monitor (Supermon)

SYS $FECC

VPEEK

TYPE: Integer Function

FORMAT: VPEEK (<bank>, <address>)

Action: Return a byte from the video address space. The video address space has 17 bit addresses, which is exposed as 2

banks of 65536 addresses each.

EXAMPLE of VPEEK Function:

Commander X16 Programmer's Reference Guide

- 41 -

PRINT VPEEK(1,$B000) : REM SCREEN CODE OF CHARACTER AT 0/0 ON SCREEN

VPOKE

TYPE: Command

FORMAT: VPOKE <bank>, <address>, <value>

Action: Set a byte in the video address space. The video address space has 17 bit addresses, which is exposed as 2 banks

of 65536 addresses each.

EXAMPLE of VPOKE Statement:

VPOKE 1,$B000+1,1 * 16 + 2 : REM SETS THE COLORS OF THE CHARACTER

 REM AT 0/0 TO RED ON WHITE

VLOAD

TYPE: Command

FORMAT: VLOAD <filename>, <device>, <VERA_high_address>, <VERA_low_address>

Action: Loads a file directly into VERA RAM, skipping the two-byte header that is presumed to be in the file.

EXAMPLES of VLOAD:

VLOAD "MYFILE.PRG", 8, 0, $4000 :REM LOADS MYFILE.PRG FROM DEVICE 8 TO VRAM $4000

 REM WHILE SKIPPING THE FIRST TWO BYTES OF THE FILE.

To load a raw binary file without skipping the first two bytes, use BVLOAD

Other New Features

Hexadecimal and Binary Literals

The numeric constants parser supports both hex ($) and binary (%) literals, like this:

PRINT $EA31 + %1010

The size of hex and binary values is only restricted by the range that can be represented by BASIC's internal floating point

representation.

LOAD into VRAM

In BASIC, the contents of files can be directly loaded into VRAM with the LOAD statement. When a secondary address

greater than one is used, the KERNAL will now load the file into the VERA's VRAM address space. The first two bytes of the

file are used as lower 16 bits of the address. The upper 4 bits are (SA-2) & 0x0ff where SA is the secondary address.

Examples:

10 REM LOAD VERA SETTINGS

20 LOAD"VERA.BIN",1,17 : REM SET ADDRESS TO $FXXXX

30 REM LOAD TILES

40 LOAD"TILES.BIN",1,3 : REM SET ADDRESS TO $1XXXX

50 REM LOAD MAP

60 LOAD"MAP.BIN",1,2 : REM SET ADDRESS TO $0XXXX

Commander X16 Programmer's Reference Guide

- 42 -

Default Device Numbers

In BASIC, the LOAD, SAVE and OPEN statements default to the last-used IEEE device (device numbers 8 and above), or 8.

Internal Representation

Like on the C64, BASIC keywords are tokenized.

The C64 BASIC V2 keywords occupy the range of $80 (END) to $CB (GO).

BASIC V3.5 also used $CE (RGR) to $FD (WHILE).

BASIC V7 introduced the $CE escape code for function tokens $CE-$02 (POT) to $CE-$0A (POINTER), and the $FE

escape code for statement tokens $FE-$02 (BANK) to $FE-$38 (SLOW).

The unreleased BASIC V10 extended the escaped tokens up to $CE-$0D (RPALETTE) and $FE-$45 (EDIT).

The X16 BASIC aims to be as compatible as possible with this encoding. Keywords added to X16 BASIC that also exist in

other versions of BASIC match the token, and new keywords are encoded in the ranges $CE-$80+ and $FE-$80+.

Auto-Boot

When BASIC starts, it automatically executes the BOOT command, which tries to load a PRG file named AUTOBOOT.X16

from device 8 and, if successful, runs it. Here are some use cases for this:

An SD card with a game can auto-boot this way.

An SD card with a collection of applications can show a menu that allows selecting an application to load.

The user's "work" SD card can contain a small auto-boot BASIC program that sets the keyboard layout and changes

the screen colors, for example.

Commander X16 Programmer's Reference Guide

- 43 -

Chapter 3: KERNAL

The Commander X16 contains a version of KERNAL as its operating system in ROM. It contains

"Channel I/O" API for abstracting devices

a variable size screen editor

a color bitmap graphics API with proportional fonts

simple memory management

timekeeping

drivers

PS/2 keyboard and mouse

NES/SNES controller

Commodore Serial Bus ("IEC")

I2C bus

KERNAL Version

The KERNAL version can be read from location $FF80 in ROM. A value of $FF indicates a custom build. All other values

encode the build number. Positive numbers are release versions ($02 = release version 2), two's complement negative

numbers are prerelease versions ($FE = $100 - 2 = prerelease version 2).

Compatibility Considerations

For applications to remain compatible between different versions of the ROM, they can rely upon:

the KERNAL API calls at $FF81-$FFF3

the KERNAL vectors at $0314-$0333

The following features must not be relied upon:

the zero page and $0200+ memory layout

direct function offsets in the ROM

Commodore 64 API Compatibility

The KERNAL fully supports the C64 KERNAL API.

Commodore 128 API Compatibility

In addition, the X16 supports a subset of the C128 API.

The following C128 APIs have equivalent functionality on the X16 but are not compatible:

Address C128 Name X16 Name

$FF5F SWAPPER screen_mode

$FF62 DLCHR screen_set_charset

$FF74 FETCH fetch

$FF77 STASH stash

New API for the Commander X16

Commander X16 Programmer's Reference Guide

- 44 -

There are lots of new APIs. Please note that their addresses and their behavior is still preliminary and can change between

revisions.

Some new APIs use the "16 bit" ABI, which uses virtual 16 bit registers r0 through r15, which are located in zero page

locations $02 through $21: r0 = r0L = $02, r0H = $03, r1 = r1L = $04 etc.

The 16 bit ABI generally follows the following conventions:

arguments

word-sized arguments: passed in r0-r5

byte-sized arguments: if three or less, passed in .A, .X, .Y; otherwise in 16 bit registers

boolean arguments: .C, .N

return values

basic rules as above

function takes no arguments: r0-r5, else indirect through passed-in pointer

arguments in r0-r5 can be "inout", i.e. they can be updated

saved/scratch registers

r0-r5: arguments (saved)

r6-r10: saved

r11-r15: scratch

.A, .X, .Y, .C, .N: scratch (unless used otherwise)

KERNAL API functions

Label Address Class Description Inputs Affects Origin

ACPTR $FFA5 CPB
Read byte from

peripheral bus
A X C64

BASIN $FFCF ChIO Get character A X C64

BSAVE $FEBA ChIO
Like SAVE but omits the

2-byte header
A X Y A X Y X16

BSOUT $FFD2 ChIO Write character A C C64

CIOUT $FFA8 CPB
Send byte to peripheral

bus
A A X C64

CLALL $FFE7 ChIO Close all channels A X C64

CLOSE $FFC3 ChIO Close a channel A A X Y P C64

CHKIN $FFC6 ChIO
Set channel for

character input
X A X C64

clock_get_date_time $FF50 Time Get the date and time none
r0 r1 r2 r3L A

X Y P
X16

clock_set_date_time $FF4D Time Set the date and time
r0 r1 r2

r3L
A X Y P X16

CHRIN $FFCF ChIO Alias for BASIN A X C64

CHROUT $FFD2 ChIO Alias for BSOUT A C C64

CLOSE_ALL $FF4A ChIO
Close all files on a

device
C128

Commander X16 Programmer's Reference Guide

- 45 -

CLRCHN $FFCC ChIO
Restore character I/O to

screen/keyboard
A X C64

console_init $FEDB Video Initialize console mode none r0 A P X16

console_get_char $FEE1 Video
Get character from

console
A

r0 r1 r2 r3 r4

r5 r6 r12 r13

r14 r15 A X Y

P

X16

console_put_char $FEDE Video
Print character to

console
A C

r0 r1 r2 r3 r4

r5 r6 r12 r13

r14 r15 A X Y

P

X16

console_put_image $FED8 Video
Draw image as if it was

a character
r0 r1 r2

r0 r1 r2 r3 r4

r5 r14 r15 A X

Y P

X16

console_set_paging_message $FED5 Video
Set paging message or

disable paging
r0 A P X16

enter_basic $FF47 Misc Enter BASIC C A X Y P X16

entropy_get $FECF Misc get 24 random bits none A X Y P X16

fetch $FF74 Mem
Read a byte from any

RAM or ROM bank
(A) X Y A X P X16

FB_cursor_next_line † $FF02 Video
Move direct-access

cursor to next line
r0† A P X16

FB_cursor_position $FEFF Video
Position the direct-

access cursor
r0 r1 A P X16

FB_fill_pixels $FF17 Video
Fill pixels with constant

color, update cursor
r0 r1 A A X Y P X16

FB_filter_pixels $FF1A Video
Apply transform to

pixels, update cursor
r0 r1

r14H r15 A X

Y P
X16

FB_get_info $FEF9 Video
Get screen size and

color depth
none r0 r1 A P X16

FB_get_pixel $FF05 Video
Read one pixel, update

cursor
none A X16

FB_get_pixels $FF08 Video
Copy pixels into RAM,

update cursor
r0 r1 (r0) A X Y P X16

FB_init $FEF6 Video Enable graphics mode none A P X16

FB_move_pixels $FF1D Video

Copy horizontally

consecutive pixels to a

different position

r0 r1 r2

r3 r4
A X Y P X16

FB_set_8_pixels $FF11 Video

Set 8 pixels from bit

mask (transparent),

update cursor

A X A P X16

Commander X16 Programmer's Reference Guide

- 46 -

FB_set_8_pixels_opaque $FF14 Video

Set 8 pixels from bit

mask (opaque), update

cursor

r0L A X

Y
r0L A P X16

FB_set_palette $FEFC Video
Set (parts of) the

palette
A X r0 A X Y P X16

FB_set_pixel $FF0B Video
Set one pixel, update

cursor
A none X16

FB_set_pixels $FF0E Video
Copy pixels from RAM,

update cursor
r0 r1 A X P X16

GETIN $FFE4 Kbd
Get character from

keyboard
A X C64

GRAPH_clear $FF23 Video Clear screen none
r0 r1 r2 r3 A X

Y P
X16

GRAPH_draw_image $FF38 Video
Draw a rectangular

image

r0 r1 r2

r3 r4
A P X16

GRAPH_draw_line $FF2C Video Draw a line
r0 r1 r2

r3

r0 r1 r2 r3 r7

r8 r9 r10 r12

r13 A X Y P

X16

GRAPH_draw_oval 🚫 $FF35 Video Draw an oval or circle - - X16

GRAPH_draw_rect † $FF2F Video
Draw a rectangle

(optionally filled)

r0 r1 r2

r3 r4 C
A P X16

GRAPH_get_char_size $FF3E Video
Get size and baseline of

a character
A X A X Y P X16

GRAPH_init $FF20 Video Initialize graphics r0
r0 r1 r2 r3 A X

Y P
X16

GRAPH_move_rect † $FF32 Video Move pixels
r0 r1 r2

r3 r4 r5

r1 r3 r5 A X Y

P
X16

GRAPH_put_char † $FF41 Video Print a character r0 r1 A r0 r1 A X Y P X16

GRAPH_set_colors $FF29 Video
Set stroke, fill and

background colors
A X Y none X16

GRAPH_set_font $FF3B Video Set the current font r0 r0 A Y P X16

GRAPH_set_window † $FF26 Video Set clipping region
r0 r1 r2

r3
A P X16

i2c_read_byte $FEC6 I2C
Read a byte from an I2C

device
A X Y A C X16

i2c_write_byte $FEC9 I2C
Write a byte to an I2C

device
A X Y A C X16

IOBASE $FFF3 Misc Return start of I/O area X Y C64

JSRFAR $FF6E Misc Execute a routine on

another RAM or ROM

PC+3

PC+5

none X16

Commander X16 Programmer's Reference Guide

- 47 -

bank

joystick_get $FF56 Joy
Get one of the saved

controller states
A A X Y P X16

joystick_scan $FF53 Joy
Poll controller states

and save them
none A X Y P X16

kbdbuf_get_modifiers $FEC0 Kbd
Get currently pressed

modifiers
A A X P X16

kbdbuf_peek $FEBD Kbd
Get next char and

keyboard queue length
A X A X P X16

kbdbuf_put $FEC3 Kbd
Append a character to

the keyboard queue
A X X16

keymap $FED2 Kbd

Set or get the current

keyboard layout Call

address

X Y C A X Y C X16

LISTEN $FFB1 CPB Send LISTEN command A A X C64

LKUPLA $FF59 ChIO
Search tables for given

LA
C128

LKUPSA $FF5C ChIO
Search tables for given

SA
C128

LOAD $FFD5 ChIO Load a file into memory A X Y A X Y C64

MACPTR $FF44 CPB
Read multiple bytes

from the peripheral bus
A X Y C A X Y P X16

MEMBOT $FF9C Mem
Get address of start of

usable RAM
C64

memory_copy $FEE7 Mem
Copy a memory region

to a different region
r0 r1 r2 r2 A X Y P X16

memory_crc $FEEA Mem
Calculate the CRC16 of

a memory region
r0 r1 r2 A X Y P X16

memory_decompress $FEED Mem
Decompress an LZSA2

block
r0 r1 r1 A X Y P X16

memory_fill $FEE4 Mem
Fill a memory region

with a byte value
A r0 r1 r1 X Y P X16

MEMTOP $FF99 Mem
Get address of end of

usable RAM
A X Y C64

monitor $FECC Misc
Enter machine language

monitor
none A X Y P X16

mouse_config $FF68 Mouse
Configure mouse

pointer
A X Y A X Y P X16

mouse_get $FF6B Mouse Get saved mouse sate X A (X) P X16

Commander X16 Programmer's Reference Guide

- 48 -

mouse_scan $FF71 Mouse
Poll mouse state and

save it
none A X Y P X16

OPEN $FFC0 ChIO Open a channel A X Y C64

PFKEY 🚫 $FF65 Kbd
Program a function key

[not yet implemented]
C128

PLOT $FFF0 Video
Read/write cursor

position
A X Y A X Y C64

PRIMM $FF7D Misc
Print string following the

caller’s code
C128

RDTIM $FFDE Time Read system clock A X Y C64

READST $FFB7 ChIO Return status byte A C64

SAVE $FFD8 ChIO
Save a file from

memory
A X Y A X Y C64

SCREEN $FFED Video
Get the screen

resolution
X Y C64

screen_mode $FF5F Video Get/set screen mode A C A X Y P X16

screen_set_charset $FF62 Video
Activate 8x8 text mode

charset
A X Y A X Y P X16

SECOND $FF93 CPB
Send LISTEN secondary

address
A A C64

SETLFS $FFBA ChIO Set LA, FA, and SA A X Y C64

SETMSG $FF90 ChIO Set verbosity A C64

SETNAM $FFBD ChIO Set filename A X Y C64

SETTIM $FFDB Time Write system clock A X Y A X Y C64

SETTMO $FFA2 CPB Set timeout C64

sprite_set_image † $FEF0 Video
Set the image of a

sprite

r0 r1 r2L

A X Y C
A P X16

sprite_set_position $FEF3 Video
Set the position of a

sprite
r0 r1 A A X P X16

stash $FF77 Mem
Write a byte to any RAM

bank

stavec A

X Y
(stavec) X P X16

STOP $FFE1 Kbd Test for STOP key A X P C64

TALK $FFB4 CPB Send TALK command A A C64

TKSA $FF96 CPB
Send TALK secondary

address
A A C64

UDTIM $FFEA Time
Increment the jiffies

clock
A X C64

Commander X16 Programmer's Reference Guide

- 49 -

UNLSN $FFAE CPB
Send UNLISTEN

command
A C64

UNTLK $FFAB CPB Send UNTALK command A C64

🚫 = Currently unimplemented

† = Partially implemented

Some notes:

For device #8, the Commodore Peripheral Bus calls first talk to the "Computer DOS" built into the ROM to detect an

SD card, before falling back to the Commodore Serial Bus.

The IOBASE call returns $9F00, the location of the first VIA controller.

The SETTMO call has been a no-op since the Commodore VIC-20, and has no function on the X16 either.

The MEMTOP call additionally returns the number of available RAM banks in the .A register.

The layout of the zero page ($0000-$00FF) and the KERNAL/BASIC variable space ($0200+) are generally not

compatible with the C64.

The KERNAL vectors ($0314-$0333) are fully compatible with the C64:

$0314-$0315: CINV – IRQ Interrupt Routine

$0316-$0317: CBINV – BRK Instruction Interrupt

$0318-$0319: NMINV – Non-Maskable Interrupt

$031A-$031B: IOPEN – Kernal OPEN Routine

$031C-$031D: ICLOSE – Kernal CLOSE Routine

$031E-$031F: ICHKIN – Kernal CHKIN Routine

$0320-$0321: ICKOUT – Kernal CKOUT Routine

$0322-$0323: ICLRCH – Kernal CLRCHN Routine

$0324-$0325: IBASIN – Kernal CHRIN Routine

$0326-$0327: IBSOUT – Kernal CHROUT Routine

$0328-$0329: ISTOP – Kernal STOP Routine

$032A-$032B: IGETIN – Kernal GETIN Routine

$032C-$032D: ICLALL – Kernal CLALL Routine

$0330-$0331: ILOAD – Kernal LOAD Routine

$0332-$0333: ISAVE – Kernal SAVE Routine

Commodore Peripheral Bus

The X16 adds one new function for dealing with the Commodore Peripheral Bus ("IEEE"):

$FF44: MACPTR - read multiple bytes from peripheral bus

Function Name: ACPTR

Purpose: Read a byte from the peripheral bus

Call address: $FFA5

Communication registers: .A

Preparatory routines: SETNAM , SETLFS , OPEN , CHKIN

Error returns: None

Registers affected: .A, .X, .Y, .P

Description: This routine gets a byte of data off the peripheral bus. The data is returned in the accumulator. Errors are

returned in the status word which can be read via the READST API call.

Function Name: MACPTR

Commander X16 Programmer's Reference Guide

- 50 -

Purpose: Read multiple bytes from the peripheral bus

Call address: $FF44

Communication registers: .A, .X, .Y, .C

Preparatory routines: SETNAM , SETLFS , OPEN , CHKIN

Error returns: None

Stack requirements: ...

Registers affected: .A, .X, .Y

Description: The routine MACPTR is the multi-byte variant of the ACPTR KERNAL routine. Instead of returning a single

byte in .A, it can read multiple bytes in one call and write them directly to memory.

The number of bytes to be read is passed in the .A register; a value of 0 indicates that it is up to the KERNAL to decide how

many bytes to read. A pointer to where the data is supposed to be written is passed in the .X (lo) and .Y (hi) registers. If

carry flag is clear, the destination address will advance with each byte read. If the carry flag is set, the destination address

will not advance as data is read. This is useful for reading data directly into VRAM, PCM FIFO, etc.

For reading into Hi RAM, you must set the desired bank prior to calling MACPTR. During the read, MACPTR will automatically

wrap to the next bank as required, leaving the new bank active when finished.

Upon return, a set .C flag indicates that the device does not support MACPTR , and the program needs to read the data byte-

by-byte using the ACPTR call instead.

If MACPTR is supported, .C is clear and .X (lo) and .Y (hi) contain the number of bytes read.

Like with ACPTR , the status of the operation can be retrieved using the READST KERNAL call.

Channel I/O

Function Name: CLOSE

Purpose: Close a logical file

Call address: $FFC3

Communication registers: .A

Preparatory routines: None

Error returns: None

Registers affected: .A, .X, .Y, .P

Description: CLOSE releases resources associated with a logical file number. If the associated device is a serial device on

the IEC bus or is a simulated serial device such as CMDR-DOS backed by the X16 SD card, and the file was opened with a

secondary address, a close command is sent to the device or to CMDR-DOS.

Memory

$FEE4: memory_fill - fill memory region with a byte value

$FEE7: memory_copy - copy memory region

$FEEA: memory_crc - calculate CRC16 of memory region

$FEED: memory_decompress - decompress LZSA2 block

$FF74: fetch - read a byte from any RAM or ROM bank

$FF77: stash - write a byte to any RAM bank

Function Name: memory_fill

Signature: void memory_fill(word address: r0, word num_bytes: r1, byte value: .a);

Purpose: Fill a memory region with a byte value.

Call address: $FEE4

Commander X16 Programmer's Reference Guide

- 51 -

Description: This function fills the memory region specified by an address (r0) and a size in bytes (r1) with the constant

byte value passed in .A. r0 and .A are preserved, r1 is destroyed.

If the target address is in the $9F00-$9FFF range, all bytes will be written to the same address (r0), i.e. the address will not

be incremented. This is useful for filling VERA memory ($9F23 or $9F24), for example.

Function Name: memory_copy

Signature: void memory_copy(word source: r0, word target: r1, word num_bytes: r2);

Purpose: Copy a memory region to a different region.

Call address: $FEE7

Description: This function copies one memory region specified by an address (r0) and a size in bytes (r2) to a different

region specified by its start address (r1). The two regions may overlap. r0 and r1 are preserved, r2 is destroyed.

Like with memory_fill , source and destination addresses in the $9F00-$9FFF range will not be incremented during the

copy. This allows, for instance, uploading data from RAM to VERA (destination of $9F23 or $9F24), downloading data from

VERA (source $9F23 or $9F24) or copying data inside VERA (source $9F23, destination $9F24). This functionality can also be

used to upload, download or transfer data with other I/O devices that have an 8 bit data port.

Function Name: memory_crc

Signature: (word result: r2) memory_crc(word address: r0, word num_bytes: r1);

Purpose: Calculate the CRC16 of a memory region.

Call address: $FEEA

Description: This function calculates the CRC16 checksum of the memory region specified by an address (r0) and a size in

bytes (r1). The result is returned in r2. r0 is preserved, r1 is destroyed.

Like memory_fill , this function does not increment the address if it is in the range of $9F00-$9FFF, which allows

checksumming VERA memory or data streamed from any other I/O device.

Function Name: memory_decompress

Signature: void memory_decompress(word input: r0, inout word output: r1);

Purpose: Decompress an LZSA2 block

Call address: $FEED

Description: This function decompresses an LZSA2-compressed data block from the location passed in r0 and outputs the

decompressed data at the location passed in r1. After the call, r1 will be updated with the location of the last output byte

plus one.

If the target address is in the $9F00-$9FFF range, all bytes will be written to the same address (r0), i.e. the address will not

be incremented. This is useful for decompressing directly into VERA memory ($9F23 or $9F24), for example. Note that

decompressing from I/O is not supported.

Notes:

To create compressed data, use the lzsa tool ^1 like this: lzsa -r -f2 <original_file> <compressed_file>

This function cannot be used to decompress data in-place, as the output data would overwrite the input data before

it is consumed. Therefore, make sure to load the input data to a different location.

It is possible to have the input data stored in banked RAM, with the obvious 8 KB size restriction.

Function Name: fetch

Purpose: Read a byte from any RAM or ROM bank

Call address: $FF74

Communication registers: .A, .X, .Y, .P

http://localhost:39233/

Commander X16 Programmer's Reference Guide

- 52 -

Description: This function performs an LDA (ZP),Y from any RAM or ROM bank. The the zero page address containing the

base address is passed in .A, the bank in .X and the offset from the vector in .Y. The data byte is returned in .A. The flags are

set according to .A, .X is destroyed, but .Y is preserved.

Function Name: stash

Purpose: Write a byte to any RAM bank

Call address: $FF77

Communication registers: .A, .X, .Y

Description: This function performs an STA (ZP),Y to any RAM bank. The the zero page address containing the base

address is passed in stavec ($03B2), the bank in .X and the offset from the vector in .Y. After the call, .X is destroyed, but

.A and .Y are preserved.

[this API is subject to change]

Clock

$FF4D: clock_set_date_time - set date and time

$FF50: clock_get_date_time - get date and time

Function Name: clock_set_date_time

Purpose: Set the date and time

Call address: $FF4D

Communication registers: r0, r1, r2, r3L

Preparatory routines: None

Error returns: None

Stack requirements: 0

Registers affected: .A, .X, .Y

Description: The routine clock_set_date_time sets the system's real-time-clock.

Register Contents

r0L year (1900-based)

r0H month (1-12)

r1L day (1-31)

r1H hours (0-23)

r2L minutes (0-59)

r2H seconds (0-59)

r3L jiffies (0-59)

Jiffies are 1/60th seconds.

Function Name: clock_get_date_time

Purpose: Get the date and time

Call address: $FF50

Communication registers: r0, r1, r2, r3L

Preparatory routines: None

Error returns: None

Commander X16 Programmer's Reference Guide

- 53 -

Stack requirements: 0

Registers affected: .A, .X, .Y

Description: The routine clock_get_date_time returns the state of the system's real-time-clock. The register assignment

is identical to clock_set_date_time .

On the Commander X16, the jiffies field is unsupported and will always read back as 0.

Keyboard

$FEBD: kbdbuf_peek - get first char in keyboard queue and queue length

$FEC0: kbdbuf_get_modifiers - get currently pressed modifiers

$FEC3: kbdbuf_put - append a char to the keyboard queue

$FED2: keymap - set or get the current keyboard layout

Function Name: kbdbuf_peek

Purpose: Get next char and keyboard queue length

Call address: $FEBD

Communication registers: .A, .X

Preparatory routines: None

Error returns: None

Stack requirements: 0

Registers affected: -

Description: The routine kbdbuf_peek returns the next character in the keyboard queue in .A, without removing it from

the queue, and the current length of the queue in .X. If .X is 0, the Z flag will be set, and the value of .A is undefined.

Function Name: kbdbuf_get_modifiers

Purpose: Get currently pressed modifiers

Call address: $FEC0

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 0

Registers affected: -

Description: The routine kbdbuf_get_modifiers returns a bitmask that represents the currently pressed modifier keys in

.A:

Bit Value Description Comment

0 1 Shift

1 2 Alt C64: Commodore

2 4 Control

3 8 Logo/Windows C128: Alt

4 16 Caps

This allows detecting combinations of a regular key and a modifier key in cases where there is no dedicated PETSCII code for

the combination, e.g. Ctrl+Esc or Alt+F1.

Function Name: kbdbuf_put

Commander X16 Programmer's Reference Guide

- 54 -

Purpose: Append a char to the keyboard queue

Call address: $FEC3

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 0

Registers affected: .X

Description: The routine kbdbuf_put appends the char in .A to the keyboard queue.

Function Name: keymap

Purpose: Set or get the current keyboard layout Call address: $FED2

Communication registers: .X , .Y Preparatory routines: None

Error returns: .C = 1 in case of error Stack requirements: 0

Registers affected: -

Description: If .C is set, the routine keymap returns a pointer to a zero-terminated string with the current keyboard layout

identifier in .X/.Y. If .C is clear, it sets the keyboard layout to the zero-terminated identifier pointed to by .X/.Y. On return, .C is

set in case the keyboard layout is unsupported.

Keyboard layout identifiers are in the form "DE", "DE-CH" etc.

Mouse

$FF68: mouse_config - configure mouse pointer

$FF71: mouse_scan - query mouse

$FF6B: mouse_get - get state of mouse

Function Name: mouse_config

Purpose: Configure the mouse pointer

Call address: $FF68

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 0

Registers affected: .A, .X, .Y

Description: The routine mouse_config configures the mouse pointer.

The argument in .A specifies whether the mouse pointer should be visible or not, and what shape it should have. For a list of

possible values, see the basic statement MOUSE .

The arguments in .X and .Y specify the screen resolution in 8 pixel increments. The values .X = 0 and .Y = 0 keep the

current resolution.

EXAMPLE:

SEC JSR screen_mode ; get current screen size (in 8px) into .X and .Y LDA #1 JSR mouse_config ; show the default mouse

pointer

Function Name: mouse_scan

Purpose: Query the mouse and save its state

Call address: $FF71

Communication registers: None

Preparatory routines: None

Commander X16 Programmer's Reference Guide

- 55 -

Error returns: None

Stack requirements: ?

Registers affected: .A, .X, .Y

Description: The routine mouse_scan retrieves all state from the mouse and saves it. It can then be retrieved using

mouse_get . The default interrupt handler already takes care of this, so this routine should only be called if the interrupt

handler has been completely replaced.

Function Name: mouse_get

Purpose: Get the mouse state

Call address: $FF6B

Communication registers: .X

Preparatory routines: mouse_config

Error returns: None

Stack requirements: 0

Registers affected: .A

Description: The routine mouse_get returns the state of the mouse. The caller passes the offset of a zero-page location in

.X, which the routine will populate with the mouse position in 4 consecutive bytes:

Offset Size Description

0 2 X Position

2 2 Y Position

The state of the mouse buttons is returned in the .A register:

Bit Description

0 Left Button

1 Right Button

2 Middle Button

If a button is pressed, the corresponding bit is set.

EXAMPLE:

LDX #$70

JSR mouse_get ; get mouse position in $70/$71 (X) and $72/$73 (Y)

AND #1

BNE BUTTON_PRESSED

Joystick

$FF53: joystick_scan - query joysticks

$FF56: joystick_get - get state of one joystick

Function Name: joystick_scan

Purpose: Query the joysticks and save their state

Call address: $FF53

Communication registers: None

Preparatory routines: None

Commander X16 Programmer's Reference Guide

- 56 -

Error returns: None

Stack requirements: 0

Registers affected: .A, .X, .Y

Description: The routine joystick_scan retrieves all state from the four joysticks and saves it. It can then be retrieved

using joystick_get . The default interrupt handler already takes care of this, so this routine should only be called if the

interrupt handler has been completely replaced.

Function Name: joystick_get

Purpose: Get the state of one of the joysticks

Call address: $FF56

Communication registers: .A

Preparatory routines: joystick_scan

Error returns: None

Stack requirements: 0

Registers affected: .A, .X, .Y

Description: The routine joystick_get retrieves all state from one of the joysticks. The number of the joystick is passed

in .A (0 for the keyboard joystick and 1 through 4 for SNES controllers), and the state is returned in .A, .X and .Y.

 .A, byte 0: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

 SNES | B | Y |SEL|STA|UP |DN |LT |RT |

 .X, byte 1: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

 SNES | A | X | L | R | 1 | 1 | 1 | 1 |

 .Y, byte 2:

 $00 = joystick present

 $FF = joystick not present

If a button is pressed, the corresponding bit is zero.

(With a dedicated handler, the API can also be used for other devices with an SNES controller connector. The data returned

in .A/.X/Y is just the raw 24 bits returned by the device.)

The keyboard joystick uses the standard SNES9X/ZSNES mapping:

SNES Button Keyboard Key Alt. Keyboard Key

A X Left Ctrl

B Z Left Alt

X S

Y A

L D

R C

START Enter

SELECT Left Shift

D-Pad Cursor Keys

Commander X16 Programmer's Reference Guide

- 57 -

Note that the keyboard joystick will allow LEFT and RIGHT as well as UP and DOWN to be pressed at the same time, while

controllers usually prevent this mechanically.

How to Use:

If the default interrupt handler is used:

1. Call this routine.

If the default interrupt handler is disabled or replaced:

1. Call joystick_scan to have the system query the joysticks.

2. Call this routine.

EXAMPLE:

 JSR joystick_scan

 LDA #0

 JSR joystick_get

 TXA

 AND #128

 BEQ A_PRESSED

I2C

$FEC6: i2c_read_byte - read a byte from an I2C device

$FEC9: i2c_write_byte - write a byte to an I2C device

Function Name: i2c_read_byte

Purpose: Read a byte at a given offset from a given I2C device

Call address: $FEC6

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: .C = 1 in case of error

Stack requirements: [?]

Registers affected: .A

Description: The routine i2c_read_byte reads a single byte at offset .Y from I2C device .X and returns the result in .A. .C

is 0 if the read was successful, and 1 if no such device exists.

EXAMPLE:

LDX #$6F ; RTC device

LDY #$20 ; start of NVRAM inside RTC

JSR i2c_read_byte ; read first byte of NVRAM

Function Name: i2c_write_byte

Purpose: Write a byte at a given offset to a given I2C device

Call address: $FEC9

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: .C = 1 in case of error

Stack requirements: [?] Registers affected: .A

Commander X16 Programmer's Reference Guide

- 58 -

Description: The routine i2c_write_byte writes the byte in .A at offset .Y of I2C device .X. .C is 0 if the write was

successful, and 1 if no such device exists.

EXAMPLES:

LDX #$6F ; RTC device

LDY #$20 ; start of NVRAM inside RTC

LDA #'X'

JSR i2c_write_byte ; write first byte of NVRAM

LDX #$42 ; System Management Controller

LDY #$01 ; magic location for system poweroff

LDA #$00 ; magic value for system poweroff

JSR i2c_write_byte ; power off the system

; Reset system at the end of your program

LDX #$42 ; System Management Controller

LDY #$02 ; magic location for system reset

LDA #$00 ; magic value for system poweroff

JSR $FEC9 ; power off the system

Sprites

$FEF0: sprite_set_image - set the image of a sprite

$FEF3: sprite_set_position - set the position of a sprite

Function Name: sprite_set_image

Purpose: Set the image of a sprite

Call address: $FEF0

Signature: bool sprite_set_image(byte number: .a, width: .x, height: .y, apply_mask: .c, word pixels: r0, word mask: r1, byte

bpp: r2L);

Error returns: .C = 1 in case of error

Description: This function sets the image of a sprite. The number of the sprite is given in .A, The bits per pixel (bpp) in r2L,

and the width and height in .X and .Y. The pixel data at r0 is interpreted accordingly and converted into the graphics

hardware's native format. If the .C flag is set, the transparency mask pointed to by r1 is applied during the conversion. The

function returns .C = 0 if converting the data was successful, and .C = 1 otherwise. Note that this does not change the

visibility of the sprite.

Note: There are certain limitations on the possible values of width, height, bpp and apply_mask:

width and height may not exceed the hardware's capabilities.

Legal values for bpp are 1, 4 and 8. If the hardware only supports lower depths, the image data is converted down.

apply_mask is only valid for 1 bpp data.

Function Name: sprite_set_position

Purpose: Set the position of a sprite or hide it.

Call address: $FEF3

Signature: void sprite_set_position(byte number: .a, word x: r0, word y: r1);

Error returns: None

Description: This function shows a given sprite (.A) at a certain position or hides it. The position is passed in r0 and r1. If

the x position is negative (>$8000), the sprite will be hidden.

Commander X16 Programmer's Reference Guide

- 59 -

Note: This routine only supports setting the position for sprite numbers 0-31.

Framebuffer

The framebuffer API is a low-level graphics API that completely abstracts the framebuffer by exposing a minimal set of high-

performance functions. It is useful as an abstraction and as a convenience library for applications that need high

performance framebuffer access.

$FEF6: `FB_init` - enable graphics mode

$FEF9: `FB_get_info` - get screen size and color depth

$FEFC: `FB_set_palette` - set (parts of) the palette

$FEFF: `FB_cursor_position` - position the direct-access cursor

$FF02: `FB_cursor_next_line` - move direct-access cursor to next line

$FF05: `FB_get_pixel` - read one pixel, update cursor

$FF08: `FB_get_pixels` - copy pixels into RAM, update cursor

$FF0B: `FB_set_pixel` - set one pixel, update cursor

$FF0E: `FB_set_pixels` - copy pixels from RAM, update cursor

$FF11: `FB_set_8_pixels` - set 8 pixels from bit mask (transparent), update cursor

$FF14: `FB_set_8_pixels_opaque` - set 8 pixels from bit mask (opaque), update cursor

$FF17: `FB_fill_pixels` - fill pixels with constant color, update cursor

$FF1A: `FB_filter_pixels` - apply transform to pixels, update cursor

$FF1D: `FB_move_pixels` - copy horizontally consecutive pixels to a different position

All calls are vectored, which allows installing a replacement framebuffer driver.

$02E4: I_FB_init

$02E6: I_FB_get_info

$02E8: I_FB_set_palette

$02EA: I_FB_cursor_position

$02EC: I_FB_cursor_next_line

$02EE: I_FB_get_pixel

$02F0: I_FB_get_pixels

$02F2: I_FB_set_pixel

$02F4: I_FB_set_pixels

$02F6: I_FB_set_8_pixels

$02F8: I_FB_set_8_pixels_opaque

$02FA: I_FB_fill_pixels

$02FC: I_FB_filter_pixels

$02FE: I_FB_move_pixels

The model of this API is based on the direct-access cursor. In order to read and write pixels, the cursor has to be set to a

specific x/y-location, and all subsequent calls will access consecutive pixels at the cursor position and update the cursor.

The default driver supports the VERA framebuffer at a resolution of 320x200 pixels and 256 colors. Using screen_mode to

set mode $80 will enable this driver.

Function Name: FB_init

Signature: void FB_init();

Purpose: Enter graphics mode.

Function Name: FB_get_info

Signature: void FB_get_info(out word width: r0, out word height: r1, out byte color_depth: .a);

Purpose: Return the resolution and color depth

Commander X16 Programmer's Reference Guide

- 60 -

Function Name: FB_set_palette

Signature: void FB_set_palette(word pointer: r0, index: .a, color count: .x);

Purpose: Set (parts of) the palette

Description: FB_set_palette copies color data from the address pointed to by r0, updates the color in VERA palette RAM

starting at the index A, with the length of the update (in words) in X. If X is 0, all 256 colors are copied (512 bytes)

Function Name: FB_cursor_position

Signature: void FB_cursor_position(word x: r0, word y: r1);

Purpose: Position the direct-access cursor

Description: FB_cursor_position sets the direct-access cursor to the given screen coordinate. Future operations will

access pixels at the cursor location and update the cursor.

Function Name: FB_cursor_next_line

Signature: void FB_cursor_next_line(word x: r0);

Purpose: Move the direct-access cursor to next line

Description: FB_cursor_next_line increments the y position of the direct-access cursor, and sets the x position to the

same one that was passed to the previous FB_cursor_position call. This is useful for drawing rectangular shapes, and

faster than explicitly positioning the cursor.

Function Name: FB_get_pixel

Signature: byte FB_get_pixel();

Purpose: Read one pixel, update cursor

Function Name: FB_get_pixels

Signature: void FB_get_pixels(word ptr: r0, word count: r1);

Purpose: Copy pixels into RAM, update cursor

Description: This function copies pixels into an array in RAM. The array consists of one byte per pixel.

Function Name: FB_set_pixel

Signature: void FB_set_pixel(byte color: .a);

Purpose: Set one pixel, update cursor

Function Name: FB_set_pixels

Signature: void FB_set_pixels(word ptr: r0, word count: r1);

Purpose: Copy pixels from RAM, update cursor

Description: This function sets pixels from an array of pixels in RAM. The array consists of one byte per pixel.

Function Name: FB_set_8_pixels

Signature: void FB_set_8_pixels(byte pattern: .a, byte color: .x);

Purpose: Set 8 pixels from bit mask (transparent), update cursor

Description: This function sets all 1-bits of the pattern to a given color and skips a pixel for every 0 bit. The order is MSB to

LSB. The cursor will be moved by 8 pixels.

Function Name: FB_set_8_pixels_opaque

Commander X16 Programmer's Reference Guide

- 61 -

Signature: void FB_set_8_pixels_opaque(byte pattern: .a, byte mask: r0L, byte color1: .x, byte color2: .y);

Purpose: Set 8 pixels from bit mask (opaque), update cursor

Description: For every 1-bit in the mask, this function sets the pixel to color1 if the corresponding bit in the pattern is 1,

and to color2 otherwise. For every 0-bit in the mask, it skips a pixel. The order is MSB to LSB. The cursor will be moved by 8

pixels.

Function Name: FB_fill_pixels

Signature: void FB_fill_pixels(word count: r0, word step: r1, byte color: .a);

Purpose: Fill pixels with constant color, update cursor

Description: FB_fill_pixels sets pixels with a constant color. The argument step specifies the increment between

pixels. A value of 0 or 1 will cause consecutive pixels to be set. Passing a step value of the screen width will set vertically

adjacent pixels going top down. Smaller values allow drawing dotted horizontal lines, and multiples of the screen width

allow drawing dotted vertical lines.

Function Name: FB_filter_pixels

Signature: void FB_filter_pixels(word ptr: r0, word count: r1);

Purpose: Apply transform to pixels, update cursor

Description: This function allows modifying consecutive pixels. The function pointer will be called for every pixel, with the

color in .a, and it needs to return the new color in .a.

Function Name: FB_move_pixels

Signature: void FB_move_pixels(word sx: r0, word sy: r1, word tx: r2, word ty: r3, word count: r4);

Purpose: Copy horizontally consecutive pixels to a different position

[Note: Overlapping regions are not yet supported.]

Graphics

The high-level graphics API exposes a set of standard functions. It allows applications to easily perform some common high-

level actions like drawing lines, rectangles and images, as well as moving parts of the screen. All commands are completely

implemented on top of the framebuffer API, that is, they will continue working after replacing the framebuffer driver with

one that supports a different resolution, color depth or even graphics device.

$FF20: GRAPH_init - initialize graphics

$FF23: GRAPH_clear - clear screen

$FF26: GRAPH_set_window - set clipping region

$FF29: GRAPH_set_colors - set stroke, fill and background colors

$FF2C: GRAPH_draw_line - draw a line

$FF2F: GRAPH_draw_rect - draw a rectangle (optionally filled)

$FF32: GRAPH_move_rect - move pixels

$FF35: GRAPH_draw_oval - draw an oval or circle

$FF38: GRAPH_draw_image - draw a rectangular image

$FF3B: GRAPH_set_font - set the current font

$FF3E: GRAPH_get_char_size - get size and baseline of a character

$FF41: GRAPH_put_char - print a character

Function Name: GRAPH_init

Signature: void GRAPH_init(word vectors: r0);

Purpose: Activate framebuffer driver, enter and initialize graphics mode

Commander X16 Programmer's Reference Guide

- 62 -

Description: This call activates the framebuffer driver whose vector table is passed in r0. If r0 is 0, the default driver is

activated. It then switches the video hardware into graphics mode, sets the window to full screen, initializes the colors and

activates the system font.

Function Name: GRAPH_clear

Signature: void GRAPH_clear();

Purpose: Clear the current window with the current background color.

Function Name: GRAPH_set_window

Signature: void GRAPH_set_window(word x: r0, word y: r1, word width: r2, word height: r3);

Purpose: Set the clipping region

Description: All graphics commands are clipped to the window. This function configures the origin and size of the window.

All 0 arguments set the window to full screen.

[Note: Only text output and GRAPH_clear currently respect the clipping region.]

Function Name: GRAPH_set_colors

Signature: void GRAPH_set_colors(byte stroke: .a, byte fill: .x, byte background: .y);

Purpose: Set the three colors

Description: This function sets the three colors: The stroke color, the fill color and the background color.

Function Name: GRAPH_draw_line

Signature: void GRAPH_draw_line(word x1: r0, word y1: r1, word x2: r2, word y2: r3);

Purpose: Draw a line using the stroke color

Function Name: GRAPH_draw_rect

Signature: void GRAPH_draw_rect(word x: r0, word y: r1, word width: r2, word height: r3, word corner_radius: r4, bool fill: .c);

Purpose: Draw a rectangle.

Description: This function will draw the frame of a rectangle using the stroke color. If fill is true , it will also fill the

area using the fill color. To only fill a rectangle, set the stroke color to the same value as the fill color.

[Note: The border radius is currently unimplemented.]

Function Name: GRAPH_move_rect

Signature: void GRAPH_move_rect(word sx: r0, word sy: r1, word tx: r2, word ty: r3, word width: r4, word height: r5);

Purpose: Copy a rectangular screen area to a different location

Description: GRAPH_move_rect coll copy a rectangular area of the screen to a different location. The two areas may

overlap.

[Note: Support for overlapping is not currently implemented.]

Function Name: GRAPH_draw_oval

Signature: void GRAPH_draw_oval(word x: r0, word y: r1, word width: r2, word height: r3, bool fill: .c);

Purpose: Draw an oval or a circle

Description: This function draws an oval filling the given bounding box. If width equals height, the resulting shape is a

circle. The oval will be outlined by the stroke color. If fill is true , it will be filled using the fill color. To only fill an oval,

set the stroke color to the same value as the fill color.

Commander X16 Programmer's Reference Guide

- 63 -

Function Name: GRAPH_draw_image

Signature: void GRAPH_draw_image(word x: r0, word y: r1, word ptr: r2, word width: r3, word height: r4);

Purpose: Draw a rectangular image from data in memory

Description: This function copies pixel data from memory onto the screen. The representation of the data in memory has

to have one byte per pixel, with the pixels organized line by line top to bottom, and within the line left to right.

Function Name: GRAPH_set_font

Signature: void GRAPH_set_font(void ptr: r0);

Purpose: Set the current font

Description: This function sets the current font to be used for the remaining font-related functions. The argument is a

pointer to the font data structure in memory, which must be in the format of a single point size GEOS font (i.e. one GEOS

font file VLIR chunk). An argument of 0 will activate the built-in system font.

Function Name: GRAPH_get_char_size

Signature: (byte baseline: .a, byte width: .x, byte height_or_style: .y, bool is_control: .c) GRAPH_get_char_size(byte c: .a,

byte format: .x);

Purpose: Get the size and baseline of a character, or interpret a control code

Description: This functionality of GRAPH_get_char_size depends on the type of code that is passed in: For a printable

character, this function returns the metrics of the character in a given format. For a control code, it returns the resulting

format. In either case, the current format is passed in .x, and the character in .a.

The format is an opaque byte value whose value should not be relied upon, except for 0 , which is plain text.

The resulting values are measured in pixels.

The baseline is measured from the top.

Function Name: GRAPH_put_char

Signature: void GRAPH_put_char(inout word x: r0, inout word y: r1, byte c: .a);

Purpose: Print a character onto the graphics screen

Description: This function prints a single character at a given location on the graphics screen. The location is then

updated. The following control codes are supported:

$01: SWAP COLORS

$04: ATTRIBUTES: UNDERLINE

$06: ATTRIBUTES: BOLD

$07: BELL

$08: BACKSPACE

$09: TAB

$0A: LF

$0B: ATTRIBUTES: ITALICS

$0C: ATTRIBUTES: OUTLINE

$0D/$8D: REGULAR/SHIFTED RETURN

$11/$91: CURSOR: DOWN/UP

$12: ATTRIBUTES: REVERSE

$13/$93: HOME/CLEAR

$14 DEL

$92: ATTRIBUTES: CLEAR ALL

all color codes

Notes:

Commander X16 Programmer's Reference Guide

- 64 -

CR ($0D) SHIFT+CR ($8D) and LF ($0A) all set the cursor to the beginning of the next line. The only difference is

that CR and SHIFT+CR reset the attributes, and LF does not.

BACKSPACE ($08) and DEL ($14) move the cursor to the beginning of the previous character but does not actually

clear it. Multiple consecutive BACKSPACE/DEL characters are not supported.

There is no way to individually disable attributes (underlined, bold, reversed, italics, outline). The only way to

disable them is to reset the attributes using code $92, which switches to plain text.

All 16 PETSCII color codes are supported. Code $01 to swap the colors will swap the stroke and fill colors.

The stroke color is used to draw the characters, and the underline is drawn using the fill color. In reverse text mode,

the text background is filled with the fill color.

[BELL ($07), TAB ($09) and SHIFT+TAB ($18) are not yet implemented.]

Console

$FEDB: console_init - initialize console mode

$FEDE: console_put_char - print character to console

$FED8: console_put_image - draw image as if it was a character

$FEE1: console_get_char - get character from console

$FED5: console_set_paging_message - set paging message or disable paging

The console is a screen mode that allows text output and input in proportional fonts that support the usual styles. It is useful

for rich text-based interfaces.

Function Name: console_init

Signature: void console_init(word x: r0, word y: r1, word width: r2, word height: r3);

Purpose: Initialize console mode.

Call address: $FEDB

Description: This function initializes console mode. It sets up the window (text clipping area) passed into it, clears the

window and positions the cursor at the top left. All 0 arguments create a full screen console. You have to switch to graphics

mode using screen_mode beforehand.

Function Name: console_put_char

Signature: void console_put_char(byte char: .a, bool wrapping: .c);

Purpose: Print a character to the console.

Call address: $FEDE

Description: This function prints a character to the console. The .C flag specifies whether text should be wrapped at

character (.C=0) or word (.C=1) boundaries. In the latter case, characters will be buffered until a SPACE, CR or LF character

is sent, so make sure the text that is printed always ends in one of these characters.

Note: If the bottom of the screen is reached, this function will scroll its contents up to make extra room.

Function Name: console_put_image

Signature: void console_put_image(word ptr: r0, word width: r1, word height: r2);

Purpose: Draw image as if it was a character.

Call address: $FEE1

Description: This function draws an image (in GRAPH_draw_image format) at the current cursor position and advances the

cursor accordingly. This way, an image can be presented inline. A common example would be an emoji bitmap, but it is also

possible to show full-width pictures if you print a newline before and after the image.

Notes:

If the bottom of the screen is reached, this function will scroll its contents up to make extra room.

Commander X16 Programmer's Reference Guide

- 65 -

Subsequent line breaks will take the image height into account, so that the new cursor position is below the image.

Function Name: console_get_char

Signature: (byte char: .a) console_get_char();

Purpose: Get a character from the console.

Call address: $FEE1

Description: This function gets a character to the console. It does this by collecting a whole line of character, i.e. until the

user presses RETURN. Then, the line will be sent character by character.

This function allows editing the line using BACKSPACE/DEL, but does not allow moving the cursor within the line, write more

than one line, or using control codes.

Function Name: console_set_paging_message

Signature: void console_set_paging_message(word message: r0);

Purpose: Set the paging message or disable paging.

Call address: $FED5

Description: The console can halt printing after a full screen height worth of text has been printed. It will then show a

message, wait for any key, and continue printing. This function sets this message. A zero-terminated text is passed in r0. To

turn off paging, call this function with r0 = 0 - this is the default.

Note: It is possible to use control codes to change the text style and color. Do not use codes that change the cursor

position, like CR or LF. Also, the text must not overflow one line on the screen.

Other

$FECF: entropy_get - get 24 random bits

$FECC: monitor - enter machine language monitor

$FF47: enter_basic - enter BASIC

$FF5F: screen_mode - get/set screen mode

$FF62: screen_set_charset - activate 8x8 text mode charset

Function Name: entropy_get

Purpose: Get 24 random bits

Call address: $FECF

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Registers affected: .A, .X, .Y

Description: This routine returns 24 somewhat random bits in registers .A, .X, and .Y. In order to get higher-quality random

numbers, this data should be fed into a pseudo-random number generator.

How to Use:

1. Call this routine.

EXAMPLE:

 ; throw a die

 again:

 JSR entropy_get

 STX tmp ; combine 24 bits

 EOR tmp ; using exclusive-or

Commander X16 Programmer's Reference Guide

- 66 -

 STY tmp ; to get a higher-quality

 EOR tmp ; 8 bit random value

 STA tmp

 LSR

 LSR

 LSR

 LSR ; combine resulting 8 bits

 EOR tmp ; to get 4 bits

 AND #7 ; we're down to values 0-7

 CMP #0

 BEQ again ; 0 is illegal

 CMP #7

 BEQ again ; 7 is illegal

 ORA #$30 ; convert to ASCII

 JMP $FFD2 ; print character

Function Name: monitor

Purpose: Enter the machine language monitor

Call address: $FECC

Communication registers: None

Preparatory routines: None

Error returns: Does not return

Stack requirements: Does not return

Registers affected: Does not return

Description: This routine switches from BASIC to machine language monitor mode. It does not return to the caller. When

the user quits the monitor, it will restart BASIC.

How to Use:

1. Call this routine.

EXAMPLE:

 JMP monitor

Function Name: enter_basic

Purpose: Enter BASIC

Call address: $FF47

Communication registers: .C

Preparatory routines: None

Error returns: Does not return

Description: Call this to enter BASIC mode, either through a cold start (.C=1) or a warm start (.C=0).

EXAMPLE:

CLC

JMP enter_basic ; returns to the "READY." prompt

Function Name: screen_mode

Purpose: Get/Set the screen mode

Call address: $FF5F

Commander X16 Programmer's Reference Guide

- 67 -

Communication registers: .A, .X, .Y, .C

Preparatory routines: None

Error returns: .C = 1 in case of error

Stack requirements: 4

Registers affected: .A, .X, .Y

Description: If .C is set, a call to this routine gets the current screen mode in .A, the width (in tiles) of the screen in .X, and

the height (in tiles) of the screen in .Y. If .C is clear, it sets the current screen mode to the value in .A. For a list of possible

values, see the basic statement SCREEN . If the mode is unsupported, .C will be set, otherwise cleared.

EXAMPLE:

LDA #$80

CLC

JSR screen_mode ; SET 320x200@256C MODE

BCS FAILURE

Function Name: screen_set_charset

Purpose: Activate a 8x8 text mode charset

Call address: $FF62

Communication registers: .A, .X, .Y

Preparatory routines: None

Stack requirements: [?]

Registers affected: .A, .X, .Y

Description: A call to this routine uploads a character set to the video hardware and activates it. The value of .A decides

what charset to upload:

Value Description

0 use pointer in .X/.Y

1 ISO

2 PET upper/graph

3 PET upper/lower

If .A is zero, .X (lo) and .Y (hi) contain a pointer to a 2 KB RAM area that gets uploaded as the new 8x8 character set. The

data has to consist of 256 characters of 8 bytes each, top to bottom, with the MSB on the left and set bits representing the

foreground color.

EXAMPLE:

LDA #0

LDX #<MY_CHARSET

LDY #>MY_CHARSET

JSR screen_set_charset ; UPLOAD CUSTOM CHARSET "MY_CHARSET"

Function Name: JSRFAR

Purpose: Execute a routine on another RAM or ROM bank

Call address: $FF6E

Communication registers: None

Commander X16 Programmer's Reference Guide

- 68 -

Preparatory routines: None

Error returns: None

Stack requirements: 4

Registers affected: None

Description: The routine JSRFAR enables code to execute some other code located on a specific RAM or ROM bank. This

works independently of which RAM or ROM bank the currently executing code is residing in. The 16 bit address and the 8 bit

bank number have to follow the instruction stream. The JSRFAR routine will switch both the ROM and the RAM bank to the

specified bank and restore it after the routine's RTS . Execution resumes after the 3 byte arguments. Note: The C128 also

has a JSRFAR function at $FF6E, but it is incompatible with the X16 version.

How to Use:

1. Call this routine.

EXAMPLE:

 JSR JSRFAR

 .WORD $C000 ; ADDRESS

 .BYTE 1 ; BANK

Commander X16 Programmer's Reference Guide

- 69 -

Chapter 5: Math Library

The Commander X16 contains a floating point Math library with a precision of 40 bits, which corresponds to 9 decimal digits.

It is a stand-alone derivative of the library contained in Microsoft BASIC. Except for the different base address, it is

compatible with the C128 and C65 libraries.

The following functions are available from machine language code after setting the ROM bank to 4.

Format Conversions

C128 C65 X16 Symbol Description

$AF00 $7F00 $FE00 AYINT convert floating point to integer

$AF03 $7F03 $FE03 GIVAYF convert integer to floating point

$AF06 $7F06 $FE06 FOUT convert floating point to ASCII string

$AF09 $7F09 $FE09 VAL_1
convert ASCII string to floating point

[not yet implemented]

$AF0C $7F0C $FE0C GETADR convert floating point to an address

$AF0F $7F0F $FE0F FLOATC convert address to floating point

Math Functions

C128 C65 X16 Symbol Description

$AF12 $7F12 $FE12 FSUB MEM - FACC

$AF15 $7F15 $FE15 FSUBT ARG - FACC

$AF18 $7F18 $FE18 FADD MEM + FACC

$AF1B $7F1B $FE1B FADDT ARG + FACC

$AF1E $7F1E $FE1E FMULT MEM * FACC

$AF21 $7F21 $FE21 FMULTT ARG * FACC

$AF24 $7F24 $FE24 FDIV MEM / FACC

$AF27 $7F27 $FE27 FDIVT ARG / FACC

$AF2A $7F2A $FE2A LOG compute natural log of FACC

$AF2D $7F2D $FE2D INT perform BASIC INT() on FACC

$AF30 $7F30 $FE30 SQR compute square root of FACC

$AF33 $7F33 $FE33 NEGOP negate FACC

$AF36 $7F36 $FE36 FPWR raise ARG to the MEM power

$AF39 $7F39 $FE39 FPWRT raise ARG to the FACC power

$AF3C $7F3C $FE3C EXP compute EXP of FACC

$AF3F $7F3F $FE3F COS compute COS of FACC

Commander X16 Programmer's Reference Guide

- 70 -

$AF42 $7F42 $FE42 SIN compute SIN of FACC

$AF45 $7F45 $FE45 TAN compute TAN of FACC

$AF48 $7F48 $FE48 ATN compute ATN of FACC

$AF4B $7F4B $FE4B ROUND round FACC

$AF4E $7F4E $FE4E ABS absolute value of FACC

$AF51 $7F51 $FE51 SIGN test sign of FACC

$AF54 $7F54 $FE54 FCOMP compare FACC with MEM

$AF57 $7F57 $FE57 RND_0 generate random floating point number

Movement

C128 C65 X16 Symbol Description

$AF5A $7F5A $FE5A CONUPK move RAM MEM to ARG

$AF5D $7F5D $FE5D ROMUPK move ROM MEM to ARG

$AF60 $7F60 $FE60 MOVFRM move RAM MEM to FACC

$AF63 $7F63 $FE63 MOVFM move ROM MEM to FACC

$AF66 $7F66 $FE66 MOVMF move FACC to MEM

$AF69 $7F69 $FE69 MOVFA move ARG to FACC

$AF6C $7F6C $FE6C MOVAF move FACC to ARG

X16 Additions

The following calls are not part of the C128/C65 API.

X16 Symbol Description

$FE6F FADDH FAC += .5

$FE72 ZEROFC FAC = 0

$FE75 NORMAL Normalize FAC

$FE78 NEGFAC FAC = -FAC

$FE7B MUL10 FAC *= 10

$FE7E DIV10 FAC /= 10

$FE81 MOVEF ARG = FAC

$FE84 SGN FAC = sgn(FAC)

$FE87 FLOAT FAC = (s8).A

$FE8A FLOATS FAC = (s16)facho+1:facho

Commander X16 Programmer's Reference Guide

- 71 -

$FE8D QINT facho:facho+1:facho+2:facho+2 = u32(FAC)

$FE90 FINLOG FAC += (s8).A

$FE93 FOUTC Convert FAC to ASCIIZ string at fbuffr - 1 + .Y

$FE96 POLYX Polynomial Evaluation 1 (SIN/COS/ATN/LOG)

$FE99 POLY Polynomial Evaluation 2 (EXP)

Notes

The full documentation of these functions can be found in the book C128 Developers Package for Commodore 6502

Development .

RND_0 : For .Z=1, the C128 and C65 versions get entropy from the CIA timers. The X16 version takes entropy from

.A/.X/.Y instead. So in order to get a "real" random number, you would use code like this:

LDA #$00

PHP

JSR entropy_get ; KERNAL call to get entropy into .A/.X/.Y

PLP ; restore .Z=1

JSR RND_0

The calls FADDT , FMULTT , FDIVT and FPWRT were broken on on the C128/C65. They are fixed on the X16.

For more information on the additional calls, refer to Mapping the Commodore 64 by Sheldon Leemon, ISBN 0-

942386-23-X, but note these errata:

FMULT at $BA28 adds mem to FAC, not ARG to FAC

NORMAL at $B8D7 is incorrectly documented as being at $B8FE

http://www.zimmers.net/anonftp/pub/cbm/schematics/computers/c128/servicemanuals/C128_Developers_Package_for_Commodore_6502_Development_(1987_Oct).pdf
http://unusedino.de/ec64/technical/project64/mapping_c64.html

Commander X16 Programmer's Reference Guide

- 72 -

Chapter 6: Machine Language Monitor

The built-in machine language monitor can be started with the MON BASIC command. It is based on the monitor of the Final

Cartridge III and supports most of its features.

If you invoke the monitor by mistake, you can exit with by typing X , followed by the RETURN key.

Some features specific to this monitor are:

The I command prints a PETSCII/ISO-encoded memory dump.

The EC command prints a binary memory dump. This is also useful for character sets.

Scrolling the screen with the cursor keys or F3/F5 will continue memory dumps and disassemblies, and even

disassemble backwards.

The following commands are used to dump memory contents in various formats:

Dump Prefix description

M : 8 hex bytes

I ' 32 PETSCII/ISO characters

EC [1 binary byte (character data)

ES] 3 binary bytes (sprite data)

D , disassemble

R ; registers

Except for R , these commands take a start address and an optional end address (inclusive). The dumps are prefixed with

one of the "Prefix" characters in the table above, so they can be edited by navigating the cursor over a printed line,

changing the data and pressing RETURN.

Note that editing a disassembled line (prefix ,) only allows changing the 1-3 opcode bytes. To edit the assembly, change

the prefix to A (see below).

These are the remaining commands:

Command Syntax Description

F start end byte fill

H start end byte [byte...] hunt

C start end start compare

T start end start transfer

A address instruction assemble

G address run code

$ value convert hex to decimal

value convert decimal to hex

X exit monitor

O bank set bank

Commander X16 Programmer's Reference Guide

- 73 -

L ["filename"[,dev[,start]]] load file

S "filename",dev,start,end save file

@ command send drive command

All addresses have to be 4 digits.

All bytes have to be 2 digits (including device numbers).

The end address of S is exclusive.

The bank argument for O is

00 - FF : switch to main RAM, set RAM and ROM banks

V0 - V1 : switch to Video RAM, set bank

I : switch to the I2C address space

@ takes:

8 , 9 to change the default drive (also for L)

$ to display the disk directory

anything else as a disk command

Commander X16 Programmer's Reference Guide

- 74 -

Chapter 7: Memory Map

The Commander X16 has 512 KB of ROM and 2,088 KB (2 MB ^1 + 40 KB) of RAM with up to 3.5MB of RAM or ROM available

to cartridges.

Some of the ROM/RAM is always visible at certain address ranges, while the remaining ROM/RAM is banked into one of two

address windows.

This is an overview of the X16 memory map:

Addresses Description

$0000-$9EFF Fixed RAM (40 KB minus 256 bytes)

$9F00-$9FFF I/O Area (256 bytes)

$A000-$BFFF Banked RAM (8 KB window into one of 256 banks for a total of 2 MB)

$C000-$FFFF Banked System ROM and Cartridge ROM/RAM (16 KB window into one of 256 banks, see below)

Banked Memory

Writing to the following zero-page addresses sets the desired RAM or ROM bank:

Address Description

$0000 Current RAM bank (0-255)

$0001 Current ROM/Cartridge bank (ROM is 0-31, Cartridge is 32-255)

The currently set banks can also be read back from the respective memory locations. Both settings default to 0 on RESET.

ROM Allocations

Here is the ROM/Cartridge bank allocation:

Bank Name Description

0 KERNAL KERNAL operating system and drivers

1 KEYBD Keyboard layout tables

2 CBDOS The computer-based CBM-DOS for FAT32 SD cards

3 GEOS GEOS KERNAL

4 BASIC BASIC interpreter

5 MONITOR Machine Language Monitor

6 CHARSET PETSCII and ISO character sets (uploaded into VRAM)

7 CODEX CodeX16 Interactive Assembly Environment / Monitor

8 GRAPH Kernal graph and font routines

9 DEMO Demo routines

10 AUDIO Audio API routines

http://localhost:39233/

Commander X16 Programmer's Reference Guide

- 75 -

11 UTIL System Configuration (Date/Time, Display Preferences)

12 BANNEX BASIC Annex (code for some added BASIC functions)

13-31 – [Currently unused]

32-255 – Cartridge RAM/ROM

Important: The layout of the banks may still change.

Cartridge Allocation

Cartridges can use the remaining 32-255 banks in any combination of ROM, RAM, Memory-Mapped IO, etc. See Kevin's

reference cartridge design for ideas on how this may be used. This provides up to 3.5MB of additional RAM or ROM.

Important: The layout of the banks is not yet final.

RAM Contents

This is the allocation of fixed RAM in the KERNAL/BASIC environment.

Addresses Description

$0000-$00FF Zero page

$0100-$01FF CPU stack

$0200-$03FF KERNAL and BASIC variables, vectors

$0400-$07FF Available for machine code programs or custom data storage

$0800-$9EFF BASIC program/variables; available to the user

The $0400-$07FF can be seen as the equivalent of $C000-$CFFF on a C64. A typical use would be for helper machine

code called by BASIC.

Zero Page

Addresses Description

$0000-$0001 Banking registers

$0002-$0021 16 bit registers r0-r15 for KERNAL API

$0022-$007F Available to the user

$0080-$009C Used by KERNAL and DOS

$009D-$00A8 Reserved for DOS/BASIC

$00A9-$00D3 Used by the Math library (and BASIC)

$00D4-$00FF Used by BASIC

Machine code applications are free to reuse the BASIC area, and if they don't use the Math library, also that area.

Banking

This is the allocation of banked RAM in the KERNAL/BASIC environment.

Commander X16 Programmer's Reference Guide

- 76 -

Bank Description

0 Used for KERNAL/CBDOS variables and buffers

1-255 Available to the user

(On systems with only 512 KB RAM, banks 64-255 are unavailable.)

During startup, the KERNAL activates RAM bank 1 as the default for the user.

I/O Area

This is the memory map of the I/O Area:

Addresses Description

$9F00-$9F0F VIA I/O controller #1

$9F10-$9F1F VIA I/O controller #2

$9F20-$9F3F VERA video controller

$9F40-$9F41 YM2151 audio controller

$9F42-$9F5F Reserved

$9F60-$9F7F Expansion Card Memory Mapped IO3

$9F80-$9F9F Expansion Card Memory Mapped IO4

$9FA0-$9FBF Expansion Card Memory Mapped IO5

$9FC0-$9FDF Expansion Card Memory Mapped IO6

$9FE0-$9FFF Expansion Card Memory Mapped IO7

Expansion Cards & Cartridges

Expansion cards can be accessed via memory-mapped I/O (MMIO), as well as I2C. Cartridges are essentially expansion cards

which are housed in an external enclosure and may contain RAM, ROM and an I2C EEPOM (for save data). Internal expansion

cards may also use the RAM/ROM space, though this could cause conflicts.

For more informaiton, consult the Hardware section of the manual.

^1 : Current development systems have 2 MB of bankable RAM. Actual hardware is currently planned to have an option of

either 512 KB or 2 MB of RAM.

http://localhost:39233/
http://localhost:39233/

Commander X16 Programmer's Reference Guide

- 77 -

Chapter 8: Video Programming

The VERA video chip supports resolutions up to 640x480 with up to 256 colors from a palette of 4096, two layers of either a

bitmap or tiles, 128 sprites of up to 64x64 pixels in size. It can output VGA as well as a 525 line interlaced signal, either as

NTSC or as RGB (Amiga-style).

See the VERA Programmer's Reference for the complete reference.

The X16 KERNAL uses the following video memory layout:

Addresses Description

$00000-$12BFF 320x240@256c Bitmap

$12C00-$12FFF unused

$13000-$1AFFF Sprite Image Data (up to $1000 per sprite at 64x64 8-bit)

$1B000-$1EBFF Text Mode

$1EC00-$1EFFF unused

$1F000-$1F7FF Charset

$1F800-$1F9BF unused

$1F9C0-$1F9FF VERA PSG Registers (16 x 4 bytes)

$1FA00-$1FBFF VERA Color Palette (256 x 2 bytes)

$1FC00-$1FFFF VERA Sprite Attributes (128 x 8 bytes)

Application software is free to use any part of video RAM if it does not use the corresponding KERNAL functionality. To

restore text mode, call CINT ($FF81).

http://localhost:39233/

Commander X16 Programmer's Reference Guide

- 78 -

Chapter 9: Sound Programming

Audio bank API

The Commander X16 provides many convenience routines for controlling the YM2151 and VERA PSG. These are called

similarly to how KERNAL API calls are done in machine language.

In order to gain access to these routines, you must either use jsrfar from the KERNAL API:

AUDIO_BANK = $0A

jsr jsrfar ; $FF6E

.word ym_init ; $C063

.byte AUDIO_BANK

or switch to ROM bank $0A directly:

lda #$0A ; Audio bank number

sta $01 ; ROM bank register

Conveniently, the KERNAL API still exists in this bank, and calling a KERNAL API routine will automatically switch your ROM

bank back to the KERNAL bank to perform the routine and then switch back right before returning, so there's usually no

need for your audio-centric program to switch away from the audio bank to perform the occasional KERNAL API call.

Audio API routines

For the audio chips, some of the documentation uses the words channel and voice interchangably. This table of API routines

uses channel for the 8 on the YM2151, and voice for the 16 on the PSG.

Label Address Class Description Inputs Returns Preserves

audio_init $C09F -

Wrapper routine

that calls both

psg_init and

ym_init followed by

ym_loaddefpatches.

This is the routine

called by the

KERNAL at reset.

none none none

bas_fmchordstring $C08D BASIC Starts playing all

of notes specified

in a string. This

uses the same

parser as

bas_fmplaystring

but instead of

playing the notes

in sequence, it

starts playback of

each note in the

string, on many

channels as is

.A = string

length

.X .Y =

pointer to

string

none none

Commander X16 Programmer's Reference Guide

- 79 -

necessary, then

returns to the

caller without

delay. The first FM

channel that is

used is the one

specified by

calling

bas_playstringvoice

prior to calling this

routine. The string

pointer must point

to low RAM

($0000-$9EFF).

bas_fmfreq $C000 BASIC

Plays a note

specified in Hz on

an FM channel

.A = channel

.X .Y = 16-bit

frequency in

Hz

.C clear =

normal

.C set = no

retrigger

.C clear =

success

.C set =

error

none

bas_fmnote $C003 BASIC

Plays a note

specified in BASIC

format on an FM

channel

.A = channel

.X = note

(BASIC

format)

.Y =

fractional

semitone

.C clear =

normal

.C set = no

retrigger

.C clear =

success

.C set =

error

none

bas_fmplaystring $C006 BASIC Plays a note script

using the FM

channel which was

specified on a

previous call to

bas_playstringvoice.

This string pointer

must point to low

RAM ($0000-$9EFF).

This routine

depends on

interrupts being

enabled. In

particular, it uses

WAI as a delay for

timing, so it

expects IRQ to be

asserted and

acknowledged

.A = string

length

.X .Y =

pointer to

string

none none

Commander X16 Programmer's Reference Guide

- 80 -

once per video

frame, which is the

case by default on

the system. Stops

playback and

returns control if

the STOP key is

pressed.

bas_fmvib $C009 BASIC

Sets the LFO

speed and both

amplitude and

frequency depth

based on inputs.

Also sets the LFO

waveform to

triangle.

.A = speed

.X =

PMD/AMD

depth

.C clear =

success

.C set =

error

none

bas_playstringvoice $C00C BASIC

Preparatory

routine for

bas_fmplaystring

and

bas_psgplaystring

to set the

voice/channel

number for

playback

.A = PSG/YM

voice/channel
none .A .X

bas_psgchordstring $C090 BASIC

Starts playing all

of notes specified

in a string. This

uses the same

parser as

bas_psgplaystring

but instead of

playing the notes

in sequence, it

starts playback of

each note in the

string, on many

voices as is

necessary, then

returns to the

caller without

delay. The first

PSG voice that is

used is the one

specified by

calling

bas_playstringvoice

prior to calling this

routine. The string

pointer must point

to low RAM

($0000-$9EFF).

.A = string

length

.X .Y =

pointer to

string

none none

Commander X16 Programmer's Reference Guide

- 81 -

bas_psgfreq $C00F BASIC

Plays a note

specified in Hz on

a PSG voice

.A = voice

.X .Y = 16-bit

frequency

.C clear =

success

.C set =

error

none

bas_psgnote $C012 BASIC

Plays a note

specified in BASIC

format on a PSG

voice

.A = voice

.X = note

(BASIC

format)

.Y =

fractional

semitone

.C clear =

success

.C set =

error

none

bas_psgwav $C015 BASIC

Sets a waveform

and duty cycle for

a PSG voice

.A = voice

.X 0-63 =

Pulse, 1/128 -

64/128 duty

cycle

.X 64-127 =

Sawtooth

.X 128-191 =

Triangle

.X 192-255 =

Noise

.C clear =

success

.C set =

error

none

bas_psgplaystring $C018 BASIC

Plays a note script

using the PSG

voice which was

specified on a

previous call to

bas_playstringvoice.

This string pointer

must point to low

RAM ($0000-$9EFF).

This routine

depends on

interrupts being

enabled. In

particular, it uses

WAI as a delay for

timing, so it

expects IRQ to be

asserted and

acknowledged

once per video

frame, which is the

case by default on

the system. Stops

playback and

returns control if

the STOP key is

pressed.

.A = string

length

.X .Y =

pointer to

string

none none

notecon_bas2fm $C01B Conversion Convert a note in

BASIC format to a

.X = note

(BASIC

.X = note

(YM2151 KC)

.Y

Commander X16 Programmer's Reference Guide

- 82 -

YM2151 KC code format) .C clear =

success

.C set =

error

notecon_bas2midi $C01E Conversion

Convert a note in

BASIC format to a

MIDI note number

.X = note

(BASIC

format)

.X = MIDI

note

.C clear =

success

.C set =

error

.Y

notecon_bas2psg $C021 Conversion

Convert a note in

BASIC format to a

PSG frequency

.X = note

(BASIC

format)

.Y =

fractional

semitone

.X .Y = PSG

frequency

.C clear =

success

.C set =

error

none

notecon_fm2bas $C024 Conversion

Convert a note in

YM2151 KC format

to a note in BASIC

format

.X = YM2151

KC

.X = note

(BASIC

format)

.C clear =

success

.C set =

error

.Y

notecon_fm2midi $C027 Conversion

Convert a note in

YM2151 KC format

to a MIDI note

number

.X = YM2151

KC

.X = MIDI

note

.C clear =

success

.C set =

error

.Y

notecon_fm2psg $C02A Conversion

Convert a note in

YM2151 KC format

to a PSG

frequency

.X = YM2151

KC

.Y =

fractional

semitone

.X .Y = PSG

frequency

.C clear =

success

.C set =

error

none

notecon_freq2bas $C02D Conversion

Convert a

frequency in Hz to

a note in BASIC

format and a

fractional

semitone

.X .Y = 16-bit

frequency in

Hz

.X = note

(BASIC

format)

.Y =

fractional

semitone

.C clear =

success

.C set =

error

none

notecon_freq2fm $C030 Conversion Convert a

frequency in Hz to

YM2151 KC and a

fractional

.X .Y = 16-bit

frequency in

Hz

.X =

YM2151 KC

.Y =

fractional

none

Commander X16 Programmer's Reference Guide

- 83 -

semitone (YM2151

KF)

semitone

(YM2151 KF)

.C clear =

success

.C set =

error

notecon_freq2midi $C033 Conversion

Convert a

frequency in Hz to

a MIDI note and a

fractional

semitone

.X .Y = 16-bit

frequency in

Hz

.X = MIDI

note

.Y =

fractional

semitone

.C clear =

success

.C set =

error

none

notecon_freq2psg $C036 Conversion

Convert a

frequency in Hz to

a VERA PSG

frequency

.X .Y = 16-bit

frequency in

Hz

.X .Y = 16-

bit

frequency in

VERA PSG

format

.C clear =

success

.C set =

error

none

notecon_midi2bas $C039 Conversion

Convert a MIDI

note to a note in

BASIC format

.X = MIDI

note

.X = note

(BASIC

format)

.C clear =

success

.C set =

error

.Y

notecon_midi2fm $C03C Conversion

Convert a MIDI

note to a YM2151

KC

.X = MIDI

note

.X =

YM2151 KC

.C clear =

success

.C set =

error

.Y

notecon_midi2psg $C03F Conversion

Convert a MIDI

note and fractional

semitone to a PSG

frequency

.X = MIDI

note

.Y =

fractional

semitone

.X .Y = 16-

bit

frequency in

VERA PSG

format

.C clear =

success

.C set =

error

none

notecon_psg2bas $C042 Conversion Convert a

frequency in VERA

PSG format to a

note in BASIC

.X .Y = 16-bit

frequency in

VERA PSG

format

.X = note

(BASIC

format)

.Y =

none

Commander X16 Programmer's Reference Guide

- 84 -

format and a

fractional

semitone

fractional

semitone

.C clear =

success

.C set =

error

notecon_psg2fm $C045 Conversion

Convert a

frequency in VERA

PSG format to

YM2151 KC and a

fractional

semitone (YM2151

KF)

.X .Y = 16-bit

frequency in

VERA PSG

format

.X =

YM2151 KC

.Y =

fractional

semitone

(YM2151 KF)

.C clear =

success

.C set =

error

none

notecon_psg2midi $C048 Conversion

Convert a

frequency in VERA

PSG format to a

MIDI note and a

fractional

semitone

.X .Y = 16-bit

frequency in

VERA PSG

format

.X = MIDI

note

.Y =

fractional

semitone

.C clear =

success

.C set =

error

none

psg_getatten $C093 VERA PSG

Retrieve the

attenuation value

for a voice

previously set by

psg_setatten

.A = voice

.X =

attenuation

value

.A

psg_getpan $C096 VERA PSG

Retrieve the

simple panning

value that is

currently set for a

voice.

.A = voice
.X = pan

value
.A

psg_init $C04B VERA PSG

Initialize the state

of the PSG. Silence

all voices. Reset

the attenuation

levels to 0. Set

"playstring"

defaults including

O4, T120, S1, and L4.

Set all PSG voices

to the pulse

waveform at 50%

duty with panning

set to both L+R

none none none

psg_playfreq $C04E VERA PSG Turn on a PSG

voice at full

.A = voice

.X .Y = 16 bit

none none

Commander X16 Programmer's Reference Guide

- 85 -

volume (factoring

in attenuation)

and set its

frequency

frequency in

VERA PSG

format

psg_read $C051 VERA PSG

Read a value from

one of the VERA

PSG registers. If

the selected

register is a

volume register,

return either the

cooked value

(attenuation

applied) or the raw

value (as received

by psg_write or

psg_setvol, or as

set by

psg_playfreq)

depending on the

state of the carry

flag

.X = PSG

register

address

(offset from

$1F9C0)

.C clear = if

volume,

return raw

.C set = if

volume,

return cooked

.A = register

value
.X

psg_setatten $C054 VERA PSG

Set the

attenuation value

for a PSG voice.

The valid range is

from $00 (full

volume) to $3F

(fully muted). API

routines which

affect volume will

deduct the

attenuation value

from the intended

volume before

setting it. Calls to

this routine while a

note is playing will

change the output

volume of the

voice immediately.

This control can be

considered a

"master volume"

for the voice.

.A = voice

.X =

attenuation

none none

psg_setfreq $C057 VERA PSG

Set the frequency

of a PSG voice

without changing

any other

attributes of the

voice

.A = voice

.X .Y = 16 bit

frequency in

VERA PSG

format

none none

Commander X16 Programmer's Reference Guide

- 86 -

psg_setpan $C05A VERA PSG

Set the simple

panning for the

voice. A value of 0

will silence the

voice entirely until

another pan value

is set.

.A = voice

.X 0 = none

.X 1 = left

.X 2 = right

.X 3 = both

none none

psg_setvol $C05D VERA PSG

Set the volume for

the voice. The

volume that's

written to the

VERA has

attenuation

applied. Valid

volumes range

from $00 to $3F

inclusive

.A = voice

.X = volume
none none

psg_write $C060 VERA PSG

Write a value to

one of the VERA

PSG registers. If

the selected

register is a

volume register,

attenuation will be

applied before the

value is written to

the VERA

.A = value

.X = PSG

register

address

(offset from

$1F9C0)

none .A .X

psg_write_fast $C0A2 VERA PSG

Same effect as

psg_write but does

not preserve the

state of the VERA

CTRL and ADDR

registers. It also

assumes

VERA_CTRL bit 0 is

clear,

VERA_ADDR0_H =

$01 (auto

increment 0

recommended),

and

VERA_ADDR0_M =

$F9. This routine is

meant for use by

sound engines

that typically write

out multiple PSG

registers in a loop.

.A = value

.X = PSG

register

address

(offset from

$1F9C0)

none .A .X

ym_getatten $C099 YM2151 Retrieve the

attenuation value

for a channel

.A = channel .X =

attenuation

value

.A

Commander X16 Programmer's Reference Guide

- 87 -

previously set by

ym_setatten

ym_getpan $C09C YM2151

Retrieve the

simple panning

value that is

currently set for a

channel.

.A = channel
.X = pan

value
.A

ym_init $C063 YM2151

Initialize the state

of the YM chip.

Silence all

channels by

setting the release

part of the ADSR

envelope to max

and then setting

all channels to

released. Reset all

attenuation levels

to 0. Set

"playstring"

defaults including

O4, T120, S1, and L4.

Set panning for all

channels set to

both L+R. Reset

LFO state. Set all

of the other

registers to $00

none

.C clear =

success

.C set =

error

none

ym_loaddefpatches $C066 YM2151

Load a default set

of patches into the

8 channels.

C0: Piano (0)

C1: E. Piano (5)

C2: Vibraphone (11)

C3: Fretless (35)

C4: Violin (40)

C5: Trumpet (56)

C6: Blown Bottle

(76)

C7: Fantasia (88)

none

.C clear =

success

.C set =

error

none

ym_loadpatch $C069 YM2151 Load into a

channel a patch

preset by number

(0-161) from the

audio bank, or

from an arbitrary

memory location.

High RAM

addresses

($A000-$BFFF) are

.A = channel

.C clear = .X

.Y = patch

address

.C set = .X =

patch

number

.C clear =

success

.C set =

error

none

Commander X16 Programmer's Reference Guide

- 88 -

accepted in this

mode.

ym_loadpatchlfn $C06C YM2151

Load patch into a

channel by way of

an open logical file

number. This

routine will read

26 bytes from the

open file, or

possibly fewer

bytes if there's an

error condition.

The routine will

leave the file open

on return. On

return if .C is set,

check .A for the

error code.

.A = channel

.X = Logical

File Number

.C clear =

success

.C set .A=0

= YM error

.C set

.A&3=2 =

read

timeout

.C set

.A&3=3 =

file not open

.C set

.A&64=64 =

EOF

.C set

.A&128=128

= device not

present

none

ym_playdrum $C06F YM2151

Load a patch

associated with a

MIDI drum note

number and

trigger it on a

channel. Valid

drum note

numbers mirror

the General MIDI

percussion

standard and

range from 25

(Snare Roll)

through 87 (Open

Surdo). Note 0 will

release the note.

After the drum is

played, the

channel will still

contain the patch

for the drum

sound and thus

may not sound

musical if you

attempt to play

notes on it before

loading another

instrument patch.

.A = channel

.X = drum

note

.C clear =

success

.C set =

error

none

ym_playnote $C072 YM2151 Set a KC/KF on a

channel and

optionally trigger

it.

.A = channel

.X = KC

.Y = KF

(fractional

.C clear =

success

.C set =

error

none

Commander X16 Programmer's Reference Guide

- 89 -

semitone)

.C clear =

trigger

.C set = no

trigger

ym_setatten $C075 YM2151

Set the

attenuation value

for a channel. The

valid range is from

$00 (full volume) to

$7F (fully muted).

API routines which

affect TL or CON

will add the

attenuation value

to the intended TL

on operators that

are carriers before

setting it. Calls to

this routine will

change the TL of

the channel's

carriers

immediately. This

control can be

considered a

"master volume"

for the channel.

.A = channel

.X =

attenuation

.C clear =

success

.C set =

error

.A .X

ym_setdrum $C078 YM2151

Load a patch

associated with a

MIDI drum note

number and set

the KC/KF for it on

a channel. Called

by ym_playdrum.

.A = channel

.X = drum

note

.C clear =

success

.C set =

error

none

ym_setnote $C07B YM2151

Set a KC/KF on a

channel. Called by

ym_playnote.

.A = channel

.X = KC

.Y = KF

(fractional

semitone)

.C clear =

success

.C set =

error

none

ym_setpan $C07E YM2151

Set the simple

panning for the

channel. A value

of 0 will silence the

channel entirely

until another pan

value is set.

.A = channel

.X 0 = none

.X 1 = left

.X 2 = right

.X 3 = both

.C clear =

success

.C set =

error

none

ym_read $C081 YM2151 Read a value from

the in-RAM shadow

of one of the

YM2151 registers.

.X = YM2151

register

address

.C clear = if

.A = register

value

.C clear =

success

.X

Commander X16 Programmer's Reference Guide

- 90 -

The YM2151's

internal registers

cannot be read

from, but this API

keeps state of

what was written,

so this routine will

be able to retrieve

chip values for

you. If the

selected register is

a TL register,

return either the

cooked value

(attenuation

applied) or the raw

value (as received

by ym_write)

depending on the

state of the carry

flag

TL, return

raw

.C set = if TL,

return cooked

.C set =

error

ym_release $C084 YM2151

Release a note on

a channel. If a

note is not

playing, this

routine has no

tangible effect

.A = channel

.C clear =

success

.C set =

error

none

ym_trigger $C087 YM2151

Trigger the

currently

configured note on

a channel,

optionally

releasing the

channel first

depending on the

state of the carry

flag.

.A = channel

.C clear =

release first

.C set = no

release

.C clear =

success

.C set =

error

none

ym_write $C08A YM2151 Write a value to

one of the YM2151

registers and to

the in-RAM shadow

copy. If the

selected register is

a TL register,

attenuation will be

applied before the

value is written.

Writes which affect

which operators

are carriers will

have TL values for

that channel

.A = value

.X = YM

register

address

.C clear =

success

.C set =

error

.A .X

Commander X16 Programmer's Reference Guide

- 91 -

appropriately

recalculated and

rewritten

Direct communication with the YM2151 and VERA PSG vs API

Use of the API routines above is not required to access the capabilities of the sound chips. However, mixing raw writes to a

chip and API access for the same chip is not recommended, particularly where PSG volumes and YM2151 TL and RLFBCON

registers are concerned. The API processes volumes, calculating attenuation and adjusting the output volume accordingly,

and the API will be oblivious to direct manipulation of the sound chips.

The sections below describe how to do raw access to the sound chips outside of the API.

VERA PSG and PCM Programming

For VERA PSG and PCM, refer to the VERA Programmer's Reference .

YM2151 (OPM) FM Synthesis

The Yamaha YM2151 (OPM) sound chip is an FM synthesizer ASIC in the Commander X16. It is connected to the system bus

at I/O address 0x9F40 (address register) and at 0x9F41 (data register). It has 8 independent voices with 4 FM operators

each. Each voice is capable of left/right/both audio channel output. The four operators of each channel may be connected in

one of 8 pre-defined "connection algorithms" in order to produce a wide variety of timbres.

YM2151 Communication:

There are 3 basic operations to communicate with the YM chip: Reading its status, address select, and data write. These are

performed by reading from or writing to one of the two I/O addresses as follows:

Address Name Read Action Write Action

0x9F40 YM_address Undefined (returns ?) Selects the internal register address where data is written.

0x9F41 YM_data Returns the YM_status byte Writes the value into the currently-selected internal address.

The values stored in the YM's internal registers are write-only. If you need to know the values in the registers, you must

store a copy of the values somewhere in memory as you write updates to the YM.

YM Write Procedure

1. Ensure YM is not busy (see Write Timing below).

2. Select the desired internal register address by writing it into YM_address .

3. Write the new value for this register into YM_data .

Note: You may write into the same register multiple times without repeating a write to YM_address . The same register will

be updated with each data write.

Write Timing:

The YM2151 is sensitive to the speed at which you write data into it. If you make writes when it is not ready

to receive them, they will be dropped and the sound output will be corrupted.

You must include a delay between writes to the address select register ($9F40) and the subsequent data write. 10 CPU

cycles is the recommended minimum delay.

The YM becomes BUSY for approximately 150 CPU cycles' (at 8Mhz) whenever it receives a data write. Any writes into

YM_data during this BUSY period will be ignored!

http://localhost:39233/

Commander X16 Programmer's Reference Guide

- 92 -

In order to avoid this, you can use the BUSY flag which is bit 7 of the YM status byte. Read the status byte from

YM_data (0x9F41). If the top bit (7) is set, the YM may not be written into at this time. Note that it is not required that you

read YM_status , only that writes occur no less than ~150 CPU cycles apart. For instance, BASIC executes slowly enough

that you are in no danger of writing into the YM too quickly, so BASIC programs may skip checking YM_status .

Lastly, the BUSY flag sometimes takes a (very) short period before it goes high. This has only been observed when

IMMEDIATELY polling the flag after a write into YM_data. As long as your code does not do so, this quirk should not be an

issue.

Example Code:

Assembly Language:

check_busy:

 BIT YM_data ; check busy flag

 BMI check_busy ; wait until busy flag is clear

 LDA #$08 ; Select YM register $08 (Key-Off/On)

 STA YM_addr ;

 NOP ;<-+

 NOP ; |

 NOP ; +--slight pause before writing data

 NOP ; |

 NOP ;<-+

 LDA #$04 ; Write $04 (Release note on channel 4).

 STA YM_data

 RTS

BASIC:

10 YA=$9F40 : REM YM_ADDRESS

20 YD=$9F41 : REM YM_DATA

30 POKE YA,$29 : REM CHANNEL 1 NOTE SELECT

40 POKE YD,$4A : REM SET NOTE = CONCERT A

50 POKE YA,$08 : REM SELECT THE KEY ON/OFF REGISTER

60 POKE YD,$00+1 : REM RELEASE ANY NOTE ALREADY PLAYING ON CHANNEL 1

70 POKE YD,$78+1 : REM KEY-ON VOICE 1 TO PLAY THE NOTE

80 FOR I=1 TO 100 : NEXT I : REM DELAY WHILE NOTE PLAYS

90 POKE YD,$00+1 : REM RELEASE THE NOTE

YM2151 Internal Addressing

The YM register address space can be thought of as being divided into 3 ranges:

Range Type Description

00 .. 1F Global Values Affect individual global parameters such as LFO frequency, noise enable, etc.

20 .. 3F Channel CFG Parameters in groups of 8, one per channel. These affect the whole channel.

40 .. FF Operator CFG Parameters in groups of 32 - these map to individual operators of each voice.

YM2151 Register Map

Global Settings:

Commander X16 Programmer's Reference Guide

- 93 -

Addr Register
Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit

0
Description

$01
Test

Register
! ! ! ! ! ! LR !

Bit 1 is the LFO reset bit. Setting

it disables the LFO and holds

the oscillator at 0. Clearing it

enables the LFO.

All other bits control various test

functions and should not be

written into.

$08 Key Control . C2 M2 C1 M1 CHA

Starts and Releases notes on

the 8 channels.

Setting/Clearing bits for

M1,C1,M2,C2 controls the key

state for those operators on

channel CHA.

NOTE: The operator order is

different than the order they

appear in the Operator

configuration registers!

$0F
Noise

Control
NE . . NFRQ

NE = Noise Enable

NFRQ = Noise Frequency

When eabled, C2 of channel 7

will use a noise waveform

instead of a sine waveform.

$10 Ta High CLKA1
Top 8 bits of Timer A period

setting

$11 Ta Low CLKA2
Bottom 2 bits of Timer A period

setting

$12 Timer B CLKB Timer B period setting

$14 IRQ Control CSM . Clock ACK IRQ EN Clock Start

CSM: When a timer expires,

trigger note key-on for all

channels.

For the other 3 fields, lower bit

= Timer A, upper bit = Timer B.

Clock ACK: clears the timer's bit

in the YM_status byte and

acknowledges the IRQ.

$18 LFO Freq. LFRQ

Sets LFO frequency.

$00 = ~0.008Hz

$FF = ~32.6Hz

$19
LFO

Amplitude

0 AMD

AMD = Amplitude Modulation

Depth

PMD = Phase Modulation

(vibrato) Depth

Bit 7 determines which

parameter is being set when

writing into this register.

1 PMD

Commander X16 Programmer's Reference Guide

- 94 -

$1B
CT / LFO

Waveform
CT W

CT: sets output pins CT1 and

CT1 high or low. (not connected

to anything in X16)

W: LFO Waveform: 0-4 = Saw,

Square, Triange, Noise

For sawtooth: PM->//// AM->\\\\

Channel CFG Registers:

Register

Range

Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit

0
Description

$20 +

channel
RL FB CON

RL

Right/Left Output Enable

FB

M1 Feedback Level

CON

Operator connection

algorithm

KC

Key Code

KF

Key Fraction

PMS

Phase Modulation

Sensitivity

AMS

Amplitude Modulation

Sensitivity

$28 +

channel
. KC

$30 +

channel
KF . .

$38 +

channel
. PMS . . AMS

Operator CFG Registers:

Register

Range
Operator

Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit

0
Description

$40 M1:

$40+channel

. DT1 MUL

DT1

Detune Amount

(fine)

MUL

Frequency

Multiplier

M2:

$48+channel

C1:

$50+channel

C2:

$58+channel

$60 M1:

$60+channel

. TL

TL

Total Level

(volume

attenuation)

(0=max,

$7F=min)

M2:

$68+channel

C1:

$70+channel

Commander X16 Programmer's Reference Guide

- 95 -

C2:

$78+channel

$80 M1:

$80+channel

KS . AR

KS

Key Scaling (ADSR

rate scaling)

AR

Attack Rate

M2:

$88+channel

C1:

$90+channel

C2:

$98+channel

$A0 M1:

$A0+channel

A

M

E

n

a

. . D1R

AM-Ena

Amplitude

Modulation Enable

D1R

Decay Rate 1

(From peak down

to sustain level)

M2:

$A8+channel

C1:

$B0+channel

C2:

$B8+channel

$C0 M1:

$C0+channel

DT2 . D2R

DT2

Detune Amount

(coarse)

D2R

Decay Rate 2

(During sustain

phase)

M2:

$C8+channel

C1:

$D0+channel

C2:

$D8+channel

$E0 M1:

$E0+channel

D1L RR

D1L

Decay 1 Level

(Sustain level)

Level at which

decay switches

from D1R to D2R

RR

Release Rate

M2:

$E8+channel

C1:

$F0+channel

C2:

$F8+channel

YM2151 Register Details

Global Parameters:

LR (LFO Reset)

Register $01, bit 1

Commander X16 Programmer's Reference Guide

- 96 -

Setting this bit will disable the LFO and hold it at level 0. Clearing this bit allows the LFO to operate as normal. (See LFRQ for

further info)

KON (KeyON)

Register $08

Bits 0-2: Channel_Number

Bits 3-6: Operator M1, C1, M2, C2 control bits:

0: Releases note on operator

0->1: Triggers note attack on operator

1->1: No effect

Use this register to start/stop notes. Typically, all 4 operators are triggered/released together at once. Writing a value of

$78+channel_number will start a note on all 4 OPs, and writing a value of $00+channel_number will stop a note on all 4

OPs.

NE (Noise Enable)

Register $0F, Bit 7

When set, the C2 operator of channel 7 will use a noise waveform instead of a sine.

NFRQ (Noise Frequency)

Register $0F, Bits 0-4

Sets the noise frequency, $00 is the lowest and $1F is the highest. NE bit must be set in order for this to have any effect.

Only affects operator C2 on channel 7.

CLKA1 (Clock A, high order bits)

Register $10, Bits 0-7

This is the high-order value for Clock A (a 10-bit value).

CLKA2 (Clock A, low order bits)

Register $11, Bits 0-1

Sets the 2 low-order bits for Clock A (a 10-bit value).

Timer A's period is Computed as (64*(1024-ClkA)) / PhiM ms. (PhiM = 3579.545Khz)

CLKB (Clock B)

Register $12, Bits 0-7

Sets the Clock B period. The period for Timer B is computed as (1024*(256-CLKB)) / PhiM ms. (PhiM = 3579.545Khz)

CSM

Register $14, Bit 7

When set, the YM2151 will generate a KeyON attack on all 8 channels whenever TimerA overflows.

Clock ACK

Register $14, Bits 4-5

Clear (acknowledge) IRQ status generated by TimerA and TimerB (respectively).

IRQ EN

Commander X16 Programmer's Reference Guide

- 97 -

Register $14, Bits 2-3

When set, enables IRQ generation when TimerA or TimerB (respectively) overflow. The IRQ status of the two timers is

checked by reading from the YM2151_STATUS byte. Bit 0 = Timer A IRQ status, and Bit 1 = Timer B IRQ status. Note that

these status bits are only active if the timer has overflowed AND has its IRQ_EN bit set.

Clock Start

Register $14, Bits 0-1

When set, these bits clear the TimerA and TimerB (respectively) counters and starts it running.

LFRQ (LFO Frequency)

Register $18, Bits 0-7

Sets the LFO frequency.

$00 = ~0.008Hz

$FF = ~32.6Hz

Note that even setting the value zero here results in a positive LFO frequency. Any channels sensitive to the LFO will still be

affected by the LFO unless the LR bit is set in register $01 to completely disable it.

AMD (Amplitude Modulation Depth)

Register $19 Bits 0-6, Bit 7 clear

Sets the peak strength of the LFO's Amplitude Modulation effect. Note that bit 7 of the value written into $19 must be clear

in order to set the AMD. If bit 7 is set, the write will be interpreted as PMD.

PMD (Phase Modulation Depth)

Register $19 Bits 0-6, Bit 7 set

Sets the peak strength of the LFO's Phase Modulation effect. Note that bit 7 of the value written into $19 must be set in

order to set the PMD. If bit 7 is clear, the value is interpreted as AMD.

CT (Control pins)

Register $1B, Bits 6-7

These bits set the electrical state of the two CT pins to on/off. These pins are not connected to anything in the X16 and have

no effect.

W (LFO Waveform)

Register $1B, Bits 0-1

Sets the LFO waveform: 0: Sawtooth, 1: Square (50% duty cycle), 2: Triangle, 3: Noise

Channel Control Parameters:

RL (Right/Left output enable)

Register $20 (+ channel), Bits 6-7

Setting/Clearing these bits enables/disables audio output for the selected channel. (bit6=left, bit7=right)

FB (M1 Self-Feedback)

Register $20 (+ channel), bits 3-5

Sets the amount of self feedback on operator M1 for the selected channel. 0=none, 7=max

Commander X16 Programmer's Reference Guide

- 98 -

CON (Connection Algorithm)

Register $20 (+ channel), bits 0-2

Sets the selected channel to connect the 4 operators in one of 8 arrangements.

[insert picture here]

KC (Key Code - Note selection)

Register $28 + channel, bits 0-6

Sets the octave and semitone for the selected channel. Bits 4-6 specify the octave (0-7) and bits 0-3 specify the semitone:

0 1 2 4 5 6 8 9 A C D E

C♯ D D♯ E F F♯ G G♯ A A♯ B C

Note that natural C is at the TOP of the selected octave, and that each 4th value is skipped. Thus if concert A (A-4, 440hz) is

KC=$4A, then middle C is KC=$3E

KF (Key Fraction)

Register $30 + channel, Bits 2-7

Raises the pitch by 1/64th of a semitone * the KF value.

PMS (Phase Modulation Sensitivity)

Register $38 + channel, Bits 4-6

Sets the Phase Modulation (vibrato) sensitivity of the selected channel. The resulting vibrato depth is determined by the

combination of the global PMD setting (see above) modified by each channel's PMS.

Sensitivity values: (+/- cents)

0 1 2 3 4 5 6 7

0 5 10 20 50 100 400 700

AMS (Amplitude Modulation Sensitivity)

Register $38 + channel, Bits 0-1

Sets the Amplitude Modulation sensitivity of the selected channel. Note that each operator may individually enable or

disable this effect on its output by setting/clearing the AMS-Ena bit (see below). Operators acting as outputs will exhibit a

tremolo effect (varying volume) and operators acting as modulators will vary their effectiveness on the timbre when enabled

for amplitude modulation.

Sensitivity values: (dB)

0 1 2 3

0 23.90625 47.8125 95.625

Operator Control Parameters:

Operators are arranged as follows:

name M1 M2 C1 C2

Commander X16 Programmer's Reference Guide

- 99 -

index 0 1 2 3

These are the names used throughout this document for consistency, but they may function as either modulators or

carriers, depending on which CON ALG is used.

The Operator Control parameters are mapped to channels/operators as follows: Register + 8*op + channel. You may also

choose to think of these register addresses as using bits 0-2 = channel, bits 3-4 = operator, and bits 5-7 = parameter. This

reference will refer to them using the address range, e.g. $60-$7F = TL. To set TL for channel 2, operator 1, the register

address would be $6A ($60 + 1*8 + 2).

DT1 (Detune 1 - fine detune)

Registers $40-$5F, Bits 4-6

Detunes the operator from the channel's main pitch. Values 0 and 4=no detuning. Values 1-3=detune up, 5-7 = detune

down.

The amount of detuning varies with pitch. It decreases as the channel's pitch increases.

MUL (Frequency Multiplier)

Registers $40-$5F, Bits 0-3

If MUL=0, it multiplies the operator's frequency by 0.5

Otherwise, the frequency is multiplied by the value in MUL (1,2,3...etc)

TL (Total Level - attenuation)

Registers $60-$7F, Bits 0-6

This is essentially "volume control" - It is an attenuation value, so $00 = maximum level and $7F is minimum level. On

output operators, this is the volume output by that operator. On modulating operators, this affects the amount of

modulation done to other operators.

KS (Key Scaling)

Registers $80-$9F, Bits 6-7

Controls the speed of the ADSR progression. The KS value sets four different levels of scaling. Key scaling increases along

with the pitch set in KC. 0=min, 3=max

AR (Attack Rate)

Registers $80-$9F, Bits 0-4

Sets the attack rate of the ADSR envelope. 0=slowest, $1F=fastest

AMS-Enable (Amplitude Modulation Sensitivity Enable)

Registers $A0-$BF, Bit 7

If set, the operator's output level will be affected by the LFO according to the channel's AMS setting. If clear, the operator

will not be affected.

D1R (Decay Rate 1)

Registers $A0-$BF, Bits 0-4

Controls the rate at which the level falls from peak down to the sustain level (D1L). 0=none, $1F=fastest.

DT2 (Detune 2 - coarse)

Registers $C0-$DF, Bits 6-7

Commander X16 Programmer's Reference Guide

- 100 -

Sets a strong detune amount to the operator's frequency. Yamaha suggests that this is most useful for sound effects. 0=off,

D2R (Decay Rate 2)

Registers $C0-$DF, Bits 0-4

Sets the Decay2 rate, which takes effect once the level has fallen from peak down to the sustain level (D1L). This rate

continues until the level reaches zero or until the note is released.

0=none, $1F=fastest

D1L

Registers $E0-$FF, Bits 4-7

Sets the level at which the ADSR envelope changes decay rates from D1R to D2R. 0=minimum (no D2R), $0F=maximum

(immediately at peak, which effectively disables D1R)

RR

Registers $E0-$FF, Bitst 0-3

Sets the rate at which the level drops to zero when a note is released. 0=none, $0F=fastest

Getting sound out of the YM2151 (a brief tutorial)

While there is a large number of parameters that affect the sound of the YM2151, its operation can be thought of in

simplified terms if you consider that there are basically three components to deal with: Instrument configuration (patch),

voice pitch selection, and "pressing/releasing" the "key" to trigger (begin) and release (end) notes. It's essentially the same

as using a music keyboard. Pressing an instrument button (e.g. Marimba) makes the keyboard sound like a Marimba. Once

this is done, you press a key on the keyboard to play a note, and release it to stop the note. With the YM, loading a patch

(pressing the Marimba button) entails setting all of the various operators' registers on the voice(s) you want the instrument

to be used on. On the music keyboard, pitch and note stop/start are done with a single piano key. In the YM2151, these are

two distinct actions.

For this tutorial, we will start with the simplest operation, (triggering notes) and proceed to note selection, and finally patch

configuration.

Triggering and Releasing Notes:

Key On/Off (KON) Register ($08):

This is probably the most important single register in the YM2151. It is used to trigger and release notes. It controls the key

on/off state for all 8 channels. A note is triggered whenever its key state changes from off to on, and is released whenever

the state changes from on to off. Repeated writes of the same state (off->off or on->on) have no effect.

Whenever an operator is triggered, it progresses through the states of attack, decay1, and sustain/decay2. Whenever an

active note is released, it enters the release state where the volume decreases until reaching zero. It then remains silent

until the next time the operator is triggered. If you are familiar with the C64 SID chip, this is the same behavior as the "gate"

bit on that chip.

Key state and voice selection are both contained in the value written into the KON register as follows:

Key ON = $78 + channel number

Key OFF = $0 + channel number

Simple Examples:

Commander X16 Programmer's Reference Guide

- 101 -

To release the note in channel 4: write $08 to YM_address ($9F40) and then write $04 ($00+4) to YM_data ($9F41).

To begin a note on channel 7, write $08 into YM_address to select the KON register. Then write $7F ($78+7) into YM_data

If the current key state of a channel is not known, you can write key off and then key on immediately (after waiting for the

YM busy period to end, of course):

POKE $9F40,$08 : REM SELECT KEY ON/OFF REGISTER

POKE $9F41,$07 : REM KEY OFF FOR VOICE 7

POKE $9F41,$7F : REM KEY ON FOR VOICE 7

Remember: BASIC is slow enough that you do not need to poll the YM_status byte, but assembly and other languages will

need to do so.

The ADSR parameters will be discussed in more detail later.

Advanced:

Each channel (voice) of the YM2151 uses 4 operators which can be gated together or independently. Independent triggering

gives lots of advanced possibilities. To trigger and release operators independently, you use different values than $78 or

$00. These values are composed by 4 bits which signal the on/off state for each operator.

Suppose a note is playing on channel 2 with all 4 operators active. You can release only the M1 operator by writing $72 into

register $08.

The KON value format:

7 6 5 4 3 2 1 0

- C2 M2 C1 M1 Channel

Pitch Control

YM Registers:

KC = $28 + channel number

KF = $30 + channel number

For note selection, each voice has two parameters: KC (Key Code) and KF (Key Fraction). These are set in register ranges

$28 and $30, respectively. The KC codes correspond directly to the notes of the chromatic scale. Each value maps to a

specific octave & semitone. The KF value can even be ignored for basic musical playback. It is mostly useful for vibrato or

pitch bend effects. KF raises the pitch selected in KC in 1/64th increments of the way up to the next semitone.

Like all registers in the YM, whenever a channel's KC or KF value is written, it takes effect immediately. If a note is

playing, its pitch immediately changes. When triggering new notes, it is not important whether you write the pitch or key

the note first. This happens quickly in real-time and you will not hear any real difference. Changing the pitch without re-

triggering the ADSR envelope is how to achieve pitch slides or a legato effect.

Key Code (KC):

KC codes are "conveniently" arranged so that the upper nybble is the octave (0-7) and the lower nybble is the pitch. The

pitches are arranged as follows within an octave:

Note C♯ D D♯ E F F♯ G G♯ A A♯ B C

Low Nybble (hex) 0 1 2 4 5 6 8 9 A C D E

(Note that every 4th value is skipped.)

Commander X16 Programmer's Reference Guide

- 102 -

Combine the above with an octave to get a note's KC value. For instance: concert A (440hz) is (by sheer coincidence)

$4A . Middle C is $3E , and so forth.

Key Fraction (KF):

KF values are written into the top 6 bits of the voice's KF register. Basically the value is 0, 1<<2, 2<<2, .. 63<<2

Loading a patch

The patch configuration is by far the most complicated aspect of using the YM. If you take as given that a voice has a patch

loaded, then playing notes on it is fairly straightforward. For the moment, we will assume a pre-patched voice.

To get started quickly, here is some BASIC code to patch voice 0 with a marimba tone:

5 YA=$9F40 : YD=$9F41 : V=0

10 REM: MARIMBA PATCH FOR YM VOICE 0 (SET V=0..7 FOR OTHER VOICES)

20 DATA $DC,$00,$1B,$67,$61,$31,$21,$17,$1F,$0A,$DF,$5F,$DE

30 DATA $DE,$0E,$10,$09,$07,$00,$05,$07,$04,$FF,$A0,$16,$17

40 READ D

50 POKE YA,$20+V : POKE YD,D

60 FOR A=$38 TO $F8 STEP 8

70 READ D : POKE YA,A+V : POKE YD,D

80 NEXT A

Once a voice has been patched as above, you can now POKE notes into it with very few commands for each note.

Patches consist mostly of ADSR envelope parameters. A complete patch contains values for the $20 range register

(LR|FB|CON), for the $38 range register (AMS|PMS), and 4 values for each of the parameter ranges starting at $40. (4

operators per voice means 4 values per parameter). Since this is a huge amount of flexibility, it is recommended to

experiment with instrument creation in an application such as a chip tracker or VST, as the creative process of instrument

design is very hands-on and subjective.

Using the LFO

There is a single global LFO in the YM2151 which can affect the level (volume) and/or pitch of all 8 channels simultaneously.

It has a single frequency and waveform setting which must be shared among all channels, and shared between both phase

and amplitude modulation. The global parameters AMD and PMD act as modifiers to the sensitivity settings of the

channels. While the frequency and waveform of the LFO pattern must be shared, the depths of the two types of modulation

are independent of each other.

You can re-trigger the LFO by setting and then clearing the LR bit in the test register ($01).

Vibrato:

Use Phase Modulation on the desired channels. The PMS parameter for each channel allows them to vary their vibrato

depths individually. Channels with PMS set to zero will have no vibrato. The values given earlier in the PMS parameter

description represent their maximum amount of affect. These values are modified by the global PMD. A PMD valie of $7F

means 100% effectiveness, $40 means all channels' vibrato depths will be reduced by half, etc.

The vibrato speed is global, depending solely on the value set to LFRQ.

Amplitude Modulation:

Amplitude modulation works similarly to phase modulation, except that the intensity is a combination of the per-channel

AMS value modified by the global AMD value. Additionally, within channels having non-zero amplitude modulation

sensitivity, individual operators must have their AMS-en bit enabled in order to be affected by the modulation.

Commander X16 Programmer's Reference Guide

- 103 -

If the active operators are acting as carriers (generating output directly), then amplitude modulation will vary the volume of

the sound being produced by that operator. This can be described as a "tremelo" effect. If the operators are acting as

modulators, then the timbre of the voice will vary as the output level of the affected operators increases and decreases. You

may simultaneously enable amplitude modulation on both types of operators.

The amplitude modulation speed is global, depending solely on the value set to LFRQ.

Commander X16 Programmer's Reference Guide

- 104 -

Chapter 10: Commander X16 Programmer's Reference

Guide

I/O Programming

There are two 65C22 "Versatile Interface Adapter" (VIA) I/O controllers in the system, VIA#1 at address $9F00 and VIA#2 at

address $9F10. The IRQ out lines of VIA#1 is connected to the CPU's NMI line, while the IRQ out line of VIA#2 is connected

to the CPU's IRQ line.

The-following tables describe the connections of the I/O pins:

VIA#1

Pin Name Description

PA0 I2CDATA I2C Data

PA1 I2CCLK I2C Clock

PA2 NESLATCH NES LATCH (for all controllers)

PA3 NESCLK NES CLK (for all controllers)

PA4 NESDAT3 NES DATA (controller 3)

PA5 NESDAT2 NES DATA (controller 2)

PA6 NESDAT1 NES DATA (controller 1)

PA7 NESDAT0 NES DATA (controller 0)

PB0 Unused

PB1 Unused

PB2 Unused

PB3 SERATNO Serial ATN out

PB4 SERCLKO Serial CLK out

PB5 SERDATAO Serial DATA out

PB6 SERCLKI Serial CLK in

PB7 SERDATAI Serial DATA in

CA1 Unused

CA2 Unused

CB1 IECSRQ

CB2 Unused

The KERNAL uses Timer 2 for timing transmissions on the Serial Bus.

VIA#2

The second VIA is completely unused by the system. All its 16 GPIOs and 4 handshake I/Os can be freely used.

Commander X16 Programmer's Reference Guide

- 105 -

I2C Bus

The Commander X16 contains an I2C bus, which is implemented through two pins of VIA#1. The system management

controller (SMC) and the real-time clock (RTC) are connected through this bus. The KERNAL APIs i2c_read_byte and

i2c_write_byte allow talking to these devices.

System Management Controller

The system management controller (SMC) is device $42 on the I2C bus. It controls the power and activity LEDs, and can be

used to power down the system or inject RESET and NMI signals.

Register Value Description

$01 $00 Power off

$01 $01 Hard reboot

$02 $00 Inject RESET

$03 $00 Inject NMI

$04 $00..$FF Power LED brightness

$05 $00..$FF Activity LED brightness

$07 - Read from keyboard buffer

$18 - Read ps2 status

$19 $00..$FF Send ps2 command

$21 - Read from mouse buffer

Real-Time-Clock

The Commander X16 contains a battery-backed Microchip MCP7940N real-time-clock (RTC) chip as device $6F. It provide a

real-time clock/calendar, two alarms and 64 bytes of RAM.

Register Description

$00 Clock seconds

$01 Clock minutes

$02 Clock hours

$03 Clock weekday

$04 Clock day

$05 Clock month

$06 Clock year

$07 Control

$08 Oscillator trim

$09 reserved

$0A Alarm 0 seconds

Commander X16 Programmer's Reference Guide

- 106 -

$0B Alarm 0 minutes

$0C Alarm 0 hours

$0D Alarm 0 weekday

$0E Alarm 0 day

$0F Alarm 0 month

$10 reserved

$11 Alarm 1 seconds

$12 Alarm 1 minutes

$13 Alarm 1 hours

$14 Alarm 1 weekday

$15 Alarm 1 day

$16 Alarm 1 month

$17 reserved

$18 Power-fail minutes

$19 Power-fail hours

$1A Power-fail day

$1B Power-fail month

$1C Power-up minutes

$1D Power-up hours

$1E Power-up day

$1F Power-up month

$20-$5F 64 Bytes SRAM

The second half of the RTC's SRAM (NVRAM) is reserved for use by the KERNAL. $20-$3F is available for use by user

programs.

For more information, please refer to this device's datasheet.

Commander X16 Programmer's Reference Guide

- 107 -

Chapter 11: Working With CMDR-DOS

This manual describes Commodore DOS on FAT32, aka CMDR-DOS.

CMDR-DOS

Commander X16 duplicates and extends the programming interface used by Commodore's line of disk drives, including the

famous (or infamous) VIC-1541. CMDR-DOS uses the industry-standard FAT-32 format. Partitions can be 32MB up to (in

theory) 2TB and supports CMD-style partitions, subdirectories, timestamps and filenames up to 255 characters. It is the DOS

built into the Commander X16 .

There are three basic interfaces for CMDR-DOS: the binary interface (LOAD, SAVE, etc.), the data file interface (OPEN,

PRINT#, INPUT#, GET#), and the command interface. We will give a brief summary of BASIC commands here, but please

refer to the BASIC chapter for full syntax of each command.

If you are familiar with the SD2IEC or the CMD hard drive, navigating partitions and subdirectories is similar, with "CD",

"MD", and "RD" commands to navigate directories.

Binary Load/Save

The primary use of the binary interface is loading and saving program files and loading binary files into RAM.

Your binary commands are LOAD, SAVE, BLOAD, VLOAD, BVLOAD, VERIFY, and BVERIFY.

This is a brief summary of the LOAD and SAVE commands. For full documentation, refer to Chapter 3: BASIC Programming .

LOAD

LOAD <filename> [,device][,secondary_address][,start_address]

This reads a program file from disk. The first two bytes of the file are the memory location to which the file will be loaded,

with the low byte first. BASIC programs will start with $01 $08, which translates to $0801, the start of BASIC memory. The

device number should be 8 for reading from the SD card.

secondary_address has multiple meanings:

0 or not present: load the data to address $0801, regardless of the address header.

1: load to the address specified in the file's header

2: load into VERA RAM bank 0 (at the 16-bit address in the file)

3: load into VERA RAM bank 1 (at the 16-bit address in the file)

start_address is the location to read your data into. If you need to relocate your data to banked RAM, for example, you will

want to set the address to $A000 or higher.

Examples:

LOAD "ROBOTS.PRG",8,1 loads the program "ROBOTS.PRG" into memory at the address encoded in the file.

LOAD "HELLO",8 loads a program to the start of BASIC at $0801.

LOAD "*",8,1 loads the first program on the current directory. See the section below on wildcards for more information

about using * and ? to access files of a certain type or with unprintable characters.

LOAD "DATA.BIN",8,1,$A000 loads a file into banked RAM, starting at $A000. Don't forget to set the bank first: bank 0 is

used by the operating system, so

https://www.commanderx16.com/

Commander X16 Programmer's Reference Guide

- 108 -

SAVE

SAVE <filename>[,device]

Save a file from the computer to the SD card. SAVE always reads from the beginning of BASIC memory at $0801, up to the

end of the BASIC program. Device is optional and defaults to 8 (the SD card, or an IEC disk drive, if one is plugged in.)

One word of caution: CMDR-DOS will not let you overwrite a file by default. To overwrite a file, you need to prefix the

filename with @:, like this:

SAVE "@:DEMO.PRG"

You may need to save arbitrary binary data from other locations. To do this, use the S command in the MONITOR: Chapter 6:

Machine Language Monitor .

S "filename",8,<start_address>,<end_address>

Where and are a 16-bit hexadecimal address.

It is also a good idea to run the DOS command after a save. The Commodore model does not report certain failures back to

BASIC, so you should double-check the result after a write operation.

DOS

00, OK,00,00

READY.

An OK reply means the file saved correctly. Any other result is an error that should be addressed:

DOS

63,FILE EXISTS,00,00

CMDR-DOS does not allow files to be overwritten without special handling. If you get FILE EXISTS, either change your file's

name or save it with the @: prefix, like this:

SAVE "@:HELLO"

BLOAD

BLOAD loads a file without an address header to an arbitrary location in memory. Usage is similar to LOAD. However, BLOAD

does not require or use the 2-byte header. The first byte in the file is the first byte loaded into memory.

BLOAD "filename",8,<bank>,<start_address>

VLOAD

Read binary data into VERA. VLOAD skips the 2-byte address header and starts reading at the third byte of the file.

VLOAD "filename",8,<bank>,<start_address>

BVLOAD

Read binary data into VERA without a header. This works like BLOAD, but into VERA RAM.

VLOAD "filename",8,<bank>,<start_address>

Sequential Files

Sequential files have two basic modes: read and write. The OPEN command opens a file for reading or writing. The PRINT#

command writes to a file, and the GET# and INPUT# commands read from the file.

Commander X16 Programmer's Reference Guide

- 109 -

todo: examples

Command Channel

The command channel allows you to send commands to the CMDR-DOS interface. You can open and write to the command

channel using the OPEN command, or you can use the DOS command to issue commands and read the status. While DOS

can be used in immediate mode or in a program, only the combination of OPEN/INPUT# can read the command response

back into a variable for later processing.

In either case, the ST psuedo-variable will allow you to quickly check the status. A status of 64 is "okay", and any other

value should be checked by reading the error channel (shown below.)

To open the command channel, you can use the OPEN command with secondary address 15.

10 OPEN 15,8,15

If you want to issue a command immediately, add your command string at the end of the OPEN statement:

10 OPEN 15,8,15, "CD:/"

This example changes to the root directory of your SD card.

Now you can check your status by reading ST:

20 IF ST=64 THEN PRINT "OK": GOTO 50

To actually read the error channel and clear the error status, you need to read four values:

30 INPUT#15,A,B$,C,D

A is the error number. B$ is the error message. C and D are unused in CMDR-DOS, but will return the track and sector when

used with a disk drive on the IEC connector.

40 PRINT A;B$;C;D

50 CLOSE 15

So the entire program looks like:

10 OPEN 15,8,15, "CD:/"

20 IF ST=64 THEN PRINT "OK": GOTO 50

30 INPUT#15,A,B$,C,D

40 PRINT A;B$;C;D

50 CLOSE 15

You can also use the DOS command to send a command to CMDR-DOS. Entering DOS by itself will print the drive's status on

the screen. Entering a command in quotes or a string variable will execute the command. We will talk more about the status

variable and DOS status message in the next section.

DOS

00, 0K, 00, 00

READY.

DOS "CD:/"

The special case of DOS "$" will print a directory listing.

DOS "$"

You can also read the name of the current directory with DOS"$=C"

Commander X16 Programmer's Reference Guide

- 110 -

DOS "$=C"

DOS Features

This is the base features set compared to other Commodore DOS devices:

Feature 1541 1571/1581 CMD HD/FD SD2IEC CMDR-DOS

Sequential files yes yes yes yes yes

Relative files yes yes yes yes not yet

Block access yes yes yes yes not yet

Code execution yes yes yes no yes

Burst commands no yes yes no no

Timestamps no no yes yes yes

Time API no no yes yes not yet

Partitions no no yes yes yes

Subdirectories no no yes yes yes

It consists of the following components:

Commodore DOS interface

main.s : TALK/LISTEN dispatching

parser.s : filename/path parsing

cmdch.s : command channel parsing, status messages

file.s : file read/write

FAT32 interface

match.s : FAT32 character set conversion, wildcard matching

dir.s : FAT32 directory listing

function.s : command implementations for FAT32

FAT32 implementation

fat32/* : FAT32 for 65c02 library

All currently unsupported commands are decoded in cmdch.s anyway, but hooked into 31,SYNTAX ERROR,00,00 , so

adding features should be as easy as adding the implementation.

CMDR-DOS implements the TALK/LISTEN layer (Commodore Peripheral Bus layer 3), it can therefore be directly hooked up to

the Commodore IEEE KERNAL API (talk , tksa , untlk , listn , secnd , unlsn , acptr , ciout) and be used as a

computer-based DOS, like on the C65 and the X16.

CMDR-DOS does not contain a layer 2 implementation, i.e. IEEE-488 (PET) or Commodore Serial (C64, C128, ...). By adding a

Commodore Serial (aka "IEC") implementation, CMDR-DOS could be adapted for use as the system software of a standalone

65c02-based Serial device for Commodore computers, similar to an sd2iec device.

The Commodore DOS side and the FAT32 side are well separated, so a lot of code could be reused for a DOS that uses a

different filesystem.

Or the core feature set, these are the supported functions:

Feature Syntax Supported Comment

https://github.com/X16Community/x16-rom/tree/master/dos/fat32

Commander X16 Programmer's Reference Guide

- 111 -

Reading ,?,R yes

Writing ,?,W yes

Appending ,?,A not yet

Recovery ,?,M no not useful on FAT32

Types ,S/,P/,U/,L yes ignored on FAT32

Overwriting @: yes

Magic channels 0/1 yes

Channel 15 command command:args... yes

Channel 15 status code,string,a,b yes

CMD partition syntax 0:/1:/... yes

CMD subdirectory syntax //DIR/://DIR/: yes

Directory listing $ yes

Dir with name filtering $:FIL* yes

Dir with type filtering $:*=P/$:*=D/$:*=A yes

Dir with timestamps $=T yes but with ISO syntax

Dir with time filtering $=T</$=T< not yet

Partition listing $=P yes

Partition filtering $:NAME*=P no

List Current Directory $=C yes

And this table shows which of the standard commands are supported:

Name Syntax Description Supported

BLOCK-ALLOCATE B-A medium medium track sector Allocate a block in the BAM no
1

BLOCK-EXECUTE B-E channel medium track sector Load and execute a block not yet

BLOCK-FREE B-F medium medium track sector Free a block in the BAM no
1

BLOCK-READ B-R channel medium track sector Read block no
1

BLOCK-STATUS B-S channel medium track sector Check if block is allocated no
1

BLOCK-WRITE B-W channel medium track sector Write block no
1

BUFFER-POINTER B-P channel index Set r/w pointer within buffer not yet

CHANGE

DIRECTORY
CD[path]:name

Change the current sub-

directory
yes

CHANGE

DIRECTORY
CD[medium]:← Change sub-directory up yes

Commander X16 Programmer's Reference Guide

- 112 -

CHANGE

PARTITION
CP num Make a partition the default yes

COPY
C[path_a]:target_name=

[path_b]:source_name[,...]
Copy/concatenate files yes

COPY Cdst_medium=src_medium Copy all files between disk no
1

DUPLICATE D:dst_medium=src_medium Duplicate disk no
1

FILE LOCK F-L[path]:name[,...] Enable file write-protect yes

FILE RESTORE F-R[path]:name[,...] Restore a deleted file not yet

FILE UNLOCK F-U[path]:name[,...] Disable file write-protect yes

GET DISKCHANGE G-D Query disk change yes

GET PARTITION G-P num Get information about partition yes

INITIALIZE I[medium] Re-mount filesystem yes

LOCK L[path]:name Toggle file write protect yes

MAKE DIRECTORY MD[path]:name Create a sub-directory yes

MEMORY-EXECUTE M-E addr_lo addr_hi Execute code yes

MEMORY-READ M-R addr_lo addr_hi [count] Read RAM yes

MEMORY-WRITE M-W addr_lo addr_hi count data Write RAM yes

NEW N[medium]:name,id,FAT32 File system creation yes
3

PARTITION /[medium][:name] Select 1581 partition no

PARTITION
/[medium]:name,track sector count_lo

count_hi ,C
Create 1581 partition no

POSITION P channel record_lo record_hi offset Set record index in REL file not yet

REMOVE

DIRECTORY
RD[path]:name Delete a sub-directory yes

RENAME R[path]:new_name=old_name Rename file yes

RENAME-HEADER R-H[medium]:new_name Rename a filesystem yes

RENAME-

PARTITION
R-P:new_name=old_name Rename a partition no

1

SCRATCH S[path]:pattern[,...] Delete files yes

SWAP S-{8|9|D} Change primary address yes

TIME READ ASCII T-RA Read Time/Date (ASCII) no
4

TIME READ BCD T-RB Read Time/Date (BCD) no
4

TIME READ

DECIMAL
T-RD Read Time/Date (Decimal) no

4

Commander X16 Programmer's Reference Guide

- 113 -

TIME READ ISO T-RI Read Time/Date (ISO) no
4

TIME WRITE ASCII T-WA dow mo/da/yr hr:mi:se ampm Write Time/Date (ASCII) no
4

TIME WRITE BCD T-WB b0 b1 b2 b3 b4 b5 b6 b7 b8 Write Time/Date (BCD) no
4

TIME WRITE

DECIMAL
T-WD b0 b1 b2 b3 b4 b5 b6 b7 Write Time/Date (Decimal) no

4

TIME WRITE ISO T-WI yyyy-mm-ddThh:mm:ss dow Write Time/Date (ISO) no
4

U1/UA U1 channel medium track sector Raw read of a block not yet

U2/UB U2 channel medium track sector Raw write of a block not yet

U3-U8/UC-UH U3 - U8 Execute in user buffer not yet

U9/UI UI Soft RESET yes

U:/UJ UJ Hard RESET yes

USER U0> pa Set unit primary address yes

USER U0>B flag Enable/disable Fast Serial no

USER U0>Dval Set directory sector interleave no
1

USER U0>H number Select head 0/1 no
1

USER U0>Lflag Large REL file support on/off no

USER U0>M flag
Enable/disable 1541 emulation

mode
no

1

USER U0>R num Set number fo retries no
1

USER U0>S val Set sector interleave no
1

USER U0>T Test ROM checksum no
5

USER U0>V flag Enable/disable verify no
1

USER U0> pa Set unit primary address yes

USER UI{+|-} Use C64/VIC-20 Serial protocol no
1

UTILITY LOADER &[[path]:]name Load and execute program no
1

VALIDATE V[medium] Filesystem check no
2

WRITE PROTECT W-{0|1} Set/unset device write protect yes

1
: outdated API, not useful, or can't be supported on FAT32

2
: is a no-op, returns 00, OK,00,00

3
: third argument FAT32 has to be passed

4
: CMDR-DOS was architected to run on the main computer, so it shouldn't be DOS that keeps track of the time

5
: Instead of testing the ROM, this command currently verifies that no buffers are allocated, otherwise it halts. This

is used by unit tests to detect leaks.

Commander X16 Programmer's Reference Guide

- 114 -

The following special file syntax and OPEN options are specific to CMDR-DOS:

Feature Syntax Description

Open for Read &

Write
,?,M Allows arbitrarily reading, writing and setting the position (P)1

Get current working

directory
$=C

Produces a directory listing containing the name of the current working directory

followed by all parent directory names all the way up to /

1
: once the EOF has been reached while reading, no further reads or writes are possible.

The following added command channel features are specific to CMDR-DOS:

Feature Syntax Description

POSITION P channel p0 p1 p2 p3 Set position within file (like sd2iec); all args binary

To use the POSITION command, you need to open two channels: a data channel and the command channel. The channel

argument should be the same as the secondary address of the data channel.

Example

OPEN 1,8,2,"LEVEL.DAT,S,R"

OPEN 15,8,15,"P"+CHR$(2)+CHR$(0)+CHR$(1)+CHR$(0)+CHR$(0)

This opens LEVEL.DAT for reading and positions the read/write pointer at byte 256.

OPEN 2,8,5,"LEVEL.DAT,S,R"

OPEN 15,8,15,"P"+CHR$(5)+CHR$(128)+CHR$(0)+CHR$(0)+CHR$(0)

This time, the secondary address is 5, and the pointer is at byte 128.

Current Working Directory

The $=C command will list the current working directory and its parent path. The current directory will be at the top of the

listing, with each parent directory beneath, with / at the bottom.

DOS"$=C"

0 "/TEST "

0 "TEST" DIR

0 "/" DIR

65535 BLOCKS FREE.

License

Copyright 2020, 2023 Michael Steil < mist64@mac.com >, et al.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following

conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.

mailto:mist64@mac.com

Commander X16 Programmer's Reference Guide

- 115 -

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Commander X16 Programmer's Reference Guide

- 116 -

Chapter 12: Hardware Pinouts

This chapter covers pinout for the I/O ports and headers.

Port and Socket Listing

VERA Connectors

SNES Controller Ports (x2)

IEC Port

PS/2 Keyboard and mouse

Expansion Slots (x4 in Gen1)

User Port Header

ATX Power Supply

Front Panel

Chip sockets are not listed; pinouts are available on their respective data sheets.

Disclaimer

The instructions and information in this document are the best available information at the time of writing. This information

is subject to change, and no warranty is implied. We are not liable for damage or injury caused by use or misuse of this

information, including damage caused by inaccurate information. Interfacing and modifying your Commander X16 is done

solely at your own risk.

If you attempt to upgrade your firmware and the process fails, one of our community members may be able to help. Please

visit the forums or the Discord community, both of which can be reached through https://commanderx16.com .

SNES Ports

The computer contains two SNES style ports and will work with Super Nintendo compatible game pads. An on-board pin

header is accessible to connect two additional SNES ports.

Pin # Description Wire Color

1 +5v White

2 Data Clock Yellow/Red

3 Data Latch Orange

4 Serial Data Red/Yellow

5 N/C -

6 N/C -

7 Ground Brown

The Data Clock and Data Latch are generated by the computer and are shared across all SNES ports. The Serial Data line is

unique per controller.

https://commanderx16.com/

Commander X16 Programmer's Reference Guide

- 117 -

Thanks to Console Mods Wiki

IEC Port

The IEC port is a female 6 pin DIN 45322 connector. The pinout and specifications are the same as the Commodore 128

computer, with the required lines for Fast IEC, as used by the 1571 and 1581 diskette drives. 1541 drives are also

compatible, using standard IEC mode at 400-600 bytes/sec.

Pin Description
Signal

Direction
Remark

1 SERIAL SRQ IN Serial Service Request In, at the C128 "Fast Serial Clock"

2 GND - Ground, signal ground (0V)

3 SERIAL ATN OUT
Attention, for the selection of a device at beginning/end of a

transmission

4 SERIAL CLK IN/OUT Clock (for data transmission)

5 SERIAL DATA IN/OUT Data

6
SERIAL

RESET
OUT(/IN) Reset

The IEC protocol is beyond the scope of this document. Please see Wikipedia for more information.

PS/2 Keyboard and Mouse

Pin Name Description

1 +DATA Data

2 NC Not connected

3 GND Ground

4 Vcc +5 VDC

5 +CLK Clock

6 NC Not Connected

https://consolemods.org/wiki/SNES:Connector_Pinouts
https://en.wikipedia.org/wiki/Commodore_bus

Commander X16 Programmer's Reference Guide

- 118 -

Expansion Cards / Cartridges

The expansion slots can be used for I/O modules and RAM/ROM cartridges and expose the full CPU address and data bus,

plus the ROM bank select lines, stereo audio, and 5 IO select lines.

The expansion/cartridge port is a 60-pin edge connector with 2.54mm pitch. Pin 1 is in the rear-left corner.

Desc Pin Pin Desc

-12V 1 [] 2 +12V

GND 3 [] 4 +5V

AUDIO_L 5 [] 6 GND

AUDIO_R 7 [] 8 ROMB7

IO3 9 [] 10 ROMB0

IO4 11 [] 12 ROMB1

IO7 13 [] 14 ROMB6

IO5 15 [] 16 ROMB2

IO6 17 [] 18 ROMB5

RESB 19 [] 20 ROMB3

RDY 21 [] 22 ROMB4

IRQB 23 [] 24 PHI2

BE 25 [] 26 RWB

NMIB 27 [] 28 MLB

SYNC 29 [] 30 D0

A0 31 [] 32 D1

A1 33 [] 34 D2

A2 35 [] 36 D3

A3 37 [] 38 D4

A4 39 [] 40 D5

A5 41 [] 42 D6

A6 43 [] 44 D7

A7 45 [] 46 A15

A8 47 [] 48 A14

A9 49 [] 50 A13

A10 51 [] 52 A12

A11 53 [] 54 SDA

Commander X16 Programmer's Reference Guide

- 119 -

GND 55 [] 56 SCL

+5V 57 [] 58 GND

+12V 59 [] 60 -12V

To simplify address decoding, pins IO3-IO7 are active for specific, 32-byte memory mapped IO (MMIO) address ranges.

Address Description

$9F60-$9FFF Expansion port I/O range

$9F60-$9F7F IO3

$9F80-$9F9F IO4

$9FA0-$9FBF IO5

$9FC0-$9FDF IO6

$9FE0-$9FFF IO7

Expansion cards can use the IO3-IO7 lines as enable lines to provide their IO address range(s), or decode the address from

the address bus directly. To prevent conflicts with other devices, expansion boards should allow the user to select their

desired I/O bank with jumpers or DIP switches.

ROMB0-ROMB7 are connected to the ROM bank latch at address $01 . Values 0-31 ($00 - $1F) address the on-board ROM

chips, and 32-255 are intended for expansion ROM or RAM chips (typically used by cartridges, see below). This allows for a

total of 3.5MB of address space in the $C000-$FFFF address range.

SCL and SDA pins are shared with the i2c connector on J9 and can be used to access i2c peripherals on cartridges or

expansion cards.

AUDIO_L and AUDIO_R are routed to J10, the audio option header.

The other pins are connected to the system bus and directly to the 65C02 processor.

Cartridges

Cartridges are essentially an expansion card housed in an external enclosure. Typically they are used for applications (e.g.

games) with the X16 being able to boot directly from a cartridge at power on. Typically they contain a mix of banked ROM

and/or RAM and an optional I2C EEPROM (for storing game save states).

They can also function as an expansion card which means they can also use MMIO. Similarly an internal expansion card

could contain RAM/ROM as well.

Because of this, while develoeprs are free to use the hardware as they please, there are open discussions on suggested best

practices for using cartridges and expansion cards to avoid a poor user experience and or compatibility issues.

For example, there can be conflicts if an internal card uses RAM/ROM space allocated to cartridges. Similarly, a cartridge can

use MMIO (and doing so allows for nice features such as accelerator co-processors), but care must be taken to avoid MMIO

being used by internal cards.

One proposal is to reserve one of the MMIO address ranges for cartridges. These conversations are on-going such that the

final best practices as well as the final cartridge and expansion card designs may change. To emphasize as well, these are

neighborly best practices and not hard standards.

Booting from Cartridges

After the X16 finishes it's hardware initialization, the kernel checks bank 32 for the signature "CX16" at $C000 . If found, it

then jumps to $C004 and leaves interrupts disabled.

Commander X16 Programmer's Reference Guide

- 120 -

ATX Power Supply

The Commander X16 has a socket for an industry standard 24-pin ATX power supply connector. Either a 24-pin or 20-pin

PSU connector can be plugged in, though only the pins for the older 20-pin standard are used by the computer. You don't

need an expensive power supply, but it must supply the -12v rail. Not all do, so check your unit to make sure. If you can't

tell from the label, you can check Pin 12 and COM. If the clip side is facing away from you, pin 14 will be the second pin on

the left on the clip side. For a 20-pin cable, -12v is on pin 12, but at the same relative position — the second pin on the left

on the clip side.

24-pin ATX power connector, cable end

By CalvinTheMan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=50881708

The Commander X16 does not use the 4-pin CPU power, GPU power, 4-pin drive power, or SATA power connectors.

To save space, when running a bare motherboard, we recommend a "Pico PSU" power supply, which derives all of the

necessary power lines from a single 12V source.

J1 ROM Write Protect

Remove J1 to write protect system ROM. With J1 installed, users can program the system ROM using an appropriate ROM

flash program.

J2 NMI

Connect a button here to generate an Non Maskable Interrupt (NMI) on the CPU. This will execute a BASIC warm start, which

will stop any existing program, clear the screen, and print the READY prompt.

J3 (Unknown)

https://commons.wikimedia.org/w/index.php?curid=50881708

Commander X16 Programmer's Reference Guide

- 121 -

Connect J8 for LPT Compat. (TODO: Is this the Centronics parallel port mode Lorin hinted at early on?)

J4 Extra 65C22 Pins

Desc Pin Pin Desc

CA1 1 . . 2 CA2

PB0 3 . . 4 PB1

PB2 5 . . 6 CB2

These pins are connected to VIA 1 at $9F00-$9F0F.

J5 Program Microcontroller

Remove jumpers from J5 to program microcontroller.

J6 System Speed

Pin Desc

1 - 2 8 MHz

3 - 4 4 MHz

5 - 6 2 MHz

J7 SNES 3/4

Desc Pin Pin Desc

CLC 1 . . 2 VCC

LATCH 3 . . 4 DAT4

DAT3 5 . . 6 GND

These pins will allow for two additional SNES controllers, for a total of four controllers on the system.

J8 Front Panel

Desc Pin Pin Desc

HDD LED+ 1 . . 2 POW LED +

HDD LED- 3 . . 4 POW LED -

RESET BUT 5 . . 6 POW BUT

RESET BUT 7 . . 7 POW BUT

+5VDC 9 . . 10 NC

This pinout is compatible with newer ATX style motherboards. AT motherboards and older ATX cases may still have a 3-pin

power LED connector (with a blank pin in the middle.) You will need to move the + (red) wire on the power LED connector to

the center pin, if this is the case. Or you can use two Male-Female breadboard cables to jumper the header to your power

LED connector.

Commander X16 Programmer's Reference Guide

- 122 -

There is no on-board speaker header. Instead, all audio is routed to the rear panel headphone jack via the Audio Option

header.

J9 I2C/SMC Header

Desc Pin Pin Desc

SMC MOSI/I2C SDA 1 . . 2 5V STANDBY

RTC MFP 3 . . 4 SMC TX

SMC Reset 5 . . 6 SMC RX

SMC SCK/I2C SCL 7 . . 8 GND

SMC MISO 9 . . 10 GND

J10 Audio Option

Desc Pin Pin Desc

SDA 1 . . 2 RESB

SCL 3 . . 4 VCC

5 . . 6

+12V 7 . . 8 -12V

9 . . 10

VERA_L 11 . . 12 BUS_L

13 . . 14

VERA_R 15 . . 16 BUS_R

17 . . 18

YM_L 19 . . 20 OUT_L

21 . . 22

YM_R 23 . . 24 OUT_R

5,6,9,10,13,14,17,18,21,22 - GND

Next to the audio header is a set of jumper pads, JP1-JP6. Cutting these traces allows you to extract isolated audio from

each of the system devices or build a mixer to adjust the relative balance of the audio devices.

In order to avoid ground loop and power supply noise, we recommend installing a ground loop isolator when using an

external mixer. 2 or 3 isolators will be required (one for each stereo pair.) (TODO: measure noise and test with pro audio

gear.)

J12 User Port

Desc Pin Pin Desc

PB0 1 . . 2 PB4

PA0 3 . . 4 PB5

Commander X16 Programmer's Reference Guide

- 123 -

PA1 5 . . 6 PB6/CB1

PA2 7 . . 8 PB7/CB2

PA3 9 . . 10 GND

PA4 11 . . 12 GND

PA5 13 . . 14 GND

PA6 15 . . 16 GND

PA7 17 . . 18 GND

CA1 19 . . 20 GND

PB1 21 . . 22 GND

PB2 23 . . 24 GND

PB3/CA2 25 . . 16 VCC

User port is connected to VIA 2 at address $9F10-$9F1F. This can be used for serial or parallel port I/O. Commander X16

does not have support for a serial port device in the KERNAL.

VERA Video Header

Desc Pin Pin Desc

VCC 1 . . 2 GND

D7 3 . . 4 D6

D5 5 . . 6 D4

D3 7 . . 8 D2

D1 9 . . 10 D0

/IO1 11 . . 12 RESB

/MEMWE 13 . . 14 IRQB

A4 15 . . 16 /MEMOE

A2 17 . . 18 A3

A0 19 . . 20 A1

GND 21 . . 22 GND

VERA_L 23 . . 24 VERA_R

VERA is connected to I/O ports at $9F20-$9F3F. See VERA Programmer's Reference for details.

VGA Connector

http://localhost:39233/

Commander X16 Programmer's Reference Guide

- 124 -

1

6

11

2

7

12

3

8

13

4

9

14

5

10

15

Pin Desc

1 RED

2 GREEN

3 BLUE

4

5 GND

6 RED_RTN

7 GREEN_RTN

8 BLUE_RTN

9

10 GND

11

12

13 HSync

14 VSync

15

The VGA connector is a female DE-15 jack.

The video resolution is 640x480 59.5FPS progressive scan, RGB color, and separated H/V sync.

In interlace mode, both horizontal and vertical sync pulses will appear on the HSync pin. (TODO: Test with OSSC).

VERA does not use the ID/DDC lines.

Composite Connector

The Composite video is a standard RCA connector. Center pin carries signal. Shield is signal ground.

The signal is NTSC Composite baseband video.

The video is 480 lines 59.97Hz interlaced. Composite is not available when VGA is running at 59.5Hz progressive scan.

S-Video Connector

https://en.wikipedia.org/wiki/D-subminiature#Description,_nomenclature,_and_variants

Commander X16 Programmer's Reference Guide

- 125 -

Pin Desc

1 GND (Y)

2 GND (C)

3 Y Intensity (Luminance)

4 C Color (Chrominance)

The connector is a 4-pin Mini-DIN connector. While the same size as a PS/2 connector, the PS/2 connector has a plastic key

at the bottom. Do not attempt to plug a keyboard or mouse into the S-Video port, or bent pins will occur.

The signal is NTSC baseband Y/C separated video. S-Video provides better resolution than composite, since the color and

intensity are provided on separate pins. you can use a splitter cable to separate the Y and C signals to drive a Commodore

1702 or compatible monitor.

The video is 480 lines 59.97Hz interlaced. Composite is not available when VGA is running at 59.5Hz progressive scan.

J2 VERA Programming Interface

Pin Desc

1 +5V

2 FPGA_CDONE

3 FPGA_CRESET_B

4 SPI_MISO

5 SPI_MOSI

6 SPI_SCK

7 SPI_SSEL_N

8 GND

VERA J7 Remote SD Card Option

Pin Desc

1 CS

2 SCK

3 MOSI

4 MISO

Commander X16 Programmer's Reference Guide

- 126 -

5 +5V

6 GND

This requires an EEPROM programmer and an interface board to program. See chapter 13 for the programming adapter and

instructions.

Commander X16 Programmer's Reference Guide

- 127 -

Chapter 13: Upgrade Guide

This chapter provides tips for running upgrades on the various programmable chips.

WARNING: flashing any of these components has a risk of leading to an unbootable system. At the current time, doing

hardware flash updates requires skill and knowledge beyond that of an ordinary end user and is not recommended without

guidance from the community on the Commander X16 Discord.

Under the headings of each component is a matrix which indicates which software tools can be used to perform the flash of

that component, depending on which flashing hardware you have access to and the operating system of the computer you

have the device connected to. Some components of the Commander X16 can be self-flashed, but the risk of a failed flash

rendering your X16 unbootable is high, in which case an external programmer must be used to flash the component and

thus "unbrick" the system.

Flashable components

System ROM

SMC (PS/2 and Power controller)

VERA

System ROM

Official community system ROMs will be posted as releases at X16Community/x16-emulator inside the distribution for the

Emulator.

TODO: link to instructions for each solution in the matrix

↓ Hardware / OS → Windows Linux Mac OS Commander X16

Commander X16 - - - x16-flash

XGecu TL866II+ Xgpro minipro minipro -

XGecu TL866-3G / T48 Xgpro - - -

SMC

Official community SMC ROMs will be posted as releases at X16Community/x16-smc .

TODO: link to instructions for each solution in the matrix

↓ Hardware / OS → Windows Linux Mac OS Commander X16

Commander X16 - - - -

USBtinyISP arduino arduino arduino -

XGecu TL866II+ Xgpro - - -

XGecu TL866-3G / T48 Xgpro - - -

VERA

TODO: link to instructions for each solution in the matrix

Official community VERA bitstreams will be posted as releases at X16Community/vera-module

https://github.com/X16Community/x16-emulator/releases
https://github.com/X16Community/x16-smc/releases
https://github.com/X16Community/vera-module/releases

Commander X16 Programmer's Reference Guide

- 128 -

↓ Hardware / OS → Windows Linux Mac OS Commander X16

Commander X16 - - - flashvera

XGecu TL866II+ Xgpro minipro minipro -

XGecu TL866-3G / T48 Xgpro - - -

Commander X16 Programmer's Reference Guide

- 129 -

Appendix A: Sound

FM instrument patch presets

Instrument Name # Instrument Name

0 Acoustic Grand Piano 64 Soprano Sax †

1 Bright Acoustic Piano 65 Alto Sax †

2 Electric Grand Piano 66 Tenor Sax †

3 Honky-tonk Piano 67 Baritone Sax

4 Electric Piano 1 68 Oboe †

5 Electric Piano 2 69 English Horn †

6 Harpsichord 70 Bassoon

7 Clavinet 71 Clarinet †

8 Celesta 72 Piccolo

9 Glockenspiel 73 Flute †

10 Music Box 74 Recorder

11 Vibraphone † 75 Pan Flute

12 Marimba 76 Blown Bottle

13 Xylophone 77 Shakuhachi

14 Tubular Bells 78 Whistle †

15 Dulcimer 79 Ocarina

16 Drawbar Organ † 80 Lead 1 (Square) †

17 Percussive Organ † 81 Lead 2 (Sawtooth) †

18 Rock Organ † 82 Lead 3 (Triangle) †

19 Church Organ 83 Lead 4 (Chiff+Sine) †

20 Reed Organ 84 Lead 5 (Charang) †

21 Accordion 85 Lead 6 (Voice) †

22 Harmonica 86 Lead 7 (Fifths) †

23 Bandoneon 87 Lead 8 (Solo) †

24 Acoustic Guitar (Nylon) 88 Pad 1 (Fantasia) †

25 Acoustic Guitar (Steel) 89 Pad 2 (Warm) †

26 Electric Guitar (Jazz) 90 Pad 3 (Polysynth) †

27 Electric Guitar (Clean) 91 Pad 4 (Choir) †

Commander X16 Programmer's Reference Guide

- 130 -

28 Electric Guitar (Muted) 92 Pad 5 (Bowed)

29 Electric Guitar (Overdriven) 93 Pad 6 (Metallic)

30 Electric Guitar (Distortion) 94 Pad 7 (Halo) †

31 Electric Guitar (Harmonics) 95 Pad 8 (Sweep) †

32 Acoustic Bass 96 FX 1 (Raindrop)

33 Electric Bass (finger) 97 FX 2 (Soundtrack) †

34 Electric Bass (picked) 98 FX 3 (Crystal)

35 Fretless Bass 99 FX 4 (Atmosphere) †

36 Slap Bass 1 100 FX 5 (Brightness) †

37 Slap Bass 2 101 FX 6 (Goblin)

38 Synth Bass 1 102 FX 7 (Echo)

39 Synth Bass 2 103 FX 8 (Sci-Fi) †

40 Violin † 104 Sitar

41 Viola † 105 Banjo

42 Cello † 106 Shamisen

43 Contrabass † 107 Koto

44 Tremolo Strings † 108 Kalimba

45 Pizzicato Strings 109 Bagpipe

46 Orchestral Harp 110 Fiddle †

47 Timpani 111 Shanai †

48 String Ensemble 1 † 112 Tinkle Bell

49 String Ensemble 2 † 113 Agogo

50 Synth Strings 1 † 114 Steel Drum

51 Synth Strings 2 † 115 Woodblock

52 Choir Aahs † 116 Taiko Drum

53 Voice Doos 117 Melodic Tom

54 Synth Voice † 118 Synth Drum

55 Orchestra Hit 119 Reverse Cymbal

56 Trumpet † 120 Fret Noise

57 Trombone 121 Breath Noise

58 Tuba 122 Seashore †

59 Muted Trumpet † 123 Bird Tweet

Commander X16 Programmer's Reference Guide

- 131 -

60 French Horn 124 Telephone Ring

61 Brass Section 125 Helicopter

62 Synth Brass 1 126 Applause †

63 Synth Brass 2 127 Gunshot

† Instrument is affected by the LFO, giving it a vibrato or tremolo effect.

FM extended instrument patch presets

These presets exist mainly to support playback of drum sounds, and many of them only work correctly or sound musical at

certain pitches or within a small range of pitches.

Instrument Name # Instrument Name

128 Silent 146 Vibraslap

129 Snare Roll 147 Bongo

130 Snap 148 Maracas

131 High Q 149 Short Whistle

132 Scratch 150 Long Whistle

133 Square Click 151 Short Guiro

134 Kick 152 Long Guiro

135 Rim 153 Mute Cuica

136 Snare 154 Open Cuica

137 Clap 155 Mute Triangle

138 Tom 156 Open Triangle

139 Closed Hi-Hat 157 Jingle Bell

140 Pedal Hi-Hat 158 Bell Tree

141 Open Hi-Hat 159 Mute Surdo

142 Crash 160 Pure Sine

143 Ride Cymbal 161 Timbale

144 Splash Cymbal 162 Open Surdo

145 Tambourine

Drum presets

These are the percussion instrument mappings for the drum number argument of the ym_playdrum and ym_setdrum API

calls, and the FMDRUM BASIC command.

Instrument Name # Instrument Name

Commander X16 Programmer's Reference Guide

- 132 -

56 Cowbell

25 Snare Roll 57 Crash Cymbal 2

26 Finger Snap 58 Vibraslap

27 High Q 59 Ride Cymbal 2

28 Slap 60 High Bongo

29 Scratch Pull 61 Low Bongo

30 Scratch Push 62 Mute High Conga

31 Sticks 63 Open High Conga

32 Square Click 64 Low Conga

33 Metronome Bell 65 High Timbale

34 Metronome Click 66 Low Timbale

35 Acoustic Bass Drum 67 High Agogo

36 Electric Bass Drum 68 Low Agogo

37 Side Stick 69 Cabasa

38 Acoustic Snare 70 Maracas

39 Hand Clap 71 Short Whistle

40 Electric Snare 72 Long Whistle

41 Low Floor Tom 73 Short Guiro

42 Closed Hi-Hat 74 Long Guiro

43 High Floor Tom 75 Claves

44 Pedal Hi-Hat 76 High Woodblock

45 Low Tom 77 Low Woodblock

46 Open Hi-Hat 78 Mute Cuica

47 Low-Mid Tom 79 Open Cuica

48 High-Mid Tom 80 Mute Triangle

49 Crash Cymbal 1 81 Open Triangle

50 High Tom 82 Shaker

51 Ride Cymbal 1 83 Jingle Bell

52 Chinese Cymbal 84 Belltree

53 Ride Bell 85 Castanets

54 Tambourine 86 Mute Surdo

55 Splash Cymbal 87 Open Surdo

Commander X16 Programmer's Reference Guide

- 133 -

BASIC FMPLAY and PSGPLAY string macros

Overview

The play commands use a string of tokens to define sequences of notes to be played on a single voice of the corresponding

sound chip. Tokens cause various effects to happen, such as triggering notes, changing the playback speed, etc. In order to

minimize the amount of text required to specify a sequence of sound, the player maintains an internal state for most note

parameters.

Stateful Player Behavior:

Playback parameters such as tempo, octave, volume, note duration, etc do not need to be specified for each note. These

states are global between all voices of both the FM and PSG sound chips. The player maintains parameter state during and

after playback. For instance, setting the octave to 5 in an FMPLAY command will result in subsequent FMPLAY and

PSGPLAY statements beginning with the octave set to 5.

The player state is reset to default values whenever FMINIT or PSGINIT are used.

Parameter Default Equivalent Token

Tempo 120 T120

Octave 4 O4

Length 4 L4

Note Spacing 1 S1

Using Tokens:

The valid tokens are: A-G,I,K,L,O,P,R,S,T,V,<,> .

Each token may be followed by optional modifiers such as numbers or symbols. Options to a token must be given in the

order they are expected, and must have no spacing between them. Tokens may have spaces between them as desired. Any

unknown characters are ignored.

Example:

FMPLAY 0,"L4" : REM DEFAULT LENGTH = QUARTER NOTE

FMPLAY 0,"A2. C+." : REM VALID

FMPLAY 0,"A.2 C.+" : REM INVALID

The valid command plays A as a dotted half, followed by C♯ as a dotted quarter.

The invalid example would play A as a dotted quarter (not half) because length must come before dots. Next, it would

ignore the 2 as garbage. Then it would play natural C (not sharp) as a dotted quarter. Finally, it would ignore the + as

garbage, because sharp/flat must precede length and dot.

Token definitions:

Musical notes

Synopsis: Play a musical note, optionally setting the length.

Syntax: <A-G>[<+/->][<length>][.]

Example:

FMPLAY 0,"A+2A4C.G-8."

Commander X16 Programmer's Reference Guide

- 134 -

On the YM2151 using channel 0, plays in the current octave an A♯ half note
?
 followed by an A quarter note

?
 , followed by C

dotted quarter note, followed by G♭ dotted eighth note
?
 .

Lengths and dots after the note name or rest set the length just for the current note or rest. To set the default length for

subsequent notes and rests, use the L macro.

Rests

Synopsis: Wait for a period of silence equal to the length of a note, optionally setting the length.

Syntax: R[<length>][.]

Example:

PSGPLAY 0,"CR2DRE"

On the VERA PSG using voice 0, plays in the current octave a C quarter note, followed by a half rest (silence), followed by a

quarter D, followed by a quarter rest (silence), and finally a quarter E.

The numeral 2 in R2 sets the length for the R itself but does not alter the default note length (assumed as 4 - quarter

notes in this example).

Note Length

Synopsis: Set the default length for notes and rests that follow

Syntax: L[<length>][.]

Example values:

L4 = quarter note (crotchet)

L16 = sixteenth note (semiquaver)

L12 = 8th note triplets (quaver triplet)

L4. = dotted quarter note (1.5x the length)

L4.. = double-dotted quarter note (1.75x the length)

Example program:

10 FMPLAY 0,"L4"

20 FOR I=1 TO 2

30 FMPLAY 0,"CDECL8"

40 NEXT

On the YM2151 using channel 0, this program, when RUN, plays in the current octave the sequence C D E C first as quarter

notes, then as eighth notes the second time around.

Articulation

Synopsis: Set the spacing between notes, from legato to extreme staccato

Syntax: S<0-7>

S0 indicates legato. For FMPLAY, this also means that notes after the first in a phrase don't implicitly retrigger.

S1 is the default value, which plays a note for 7/8 of the duration of the note, and releases the note for the remaining 1/8

of the note's duration.

You can think of S is, out of 8, how much space is put between the notes.

Example:

http://localhost:39233/
http://localhost:39233/
http://localhost:39233/

Commander X16 Programmer's Reference Guide

- 135 -

FMPLAY 0,"L4S1CDES0CDES4CDE"

On the YM2151 using channel 0, plays in the current octave the sequence C D E three times, first with normal articulation,

next with legato (notes all run together and without retriggering), and finally with a moderate staccato.

Explicit retrigger

Synopsis: on the YM2151, when using S0 legato, retrigger on the next note.

Syntax: K

Example:

FMPLAY 0,"S0CDEKFGA"

On the YM2151 using channel 0, plays in the current octave the sequence C D E using legato, only triggering on the first

note, then the sequence F G A the same way. The note F is triggered without needing to release the previous note early.

Octave

Synopsis: Explictly set the octave number for notes that follow

Syntax: O<0-7>

Example:

PSGPLAY 0,"O4AO2AO6CDE"

On the VERA PSG using voice 0, changes to octave 4 and plays A (440Hz), then switches to octave 2, and plays A (110Hz),

then switches to octave 6 and plays the sequence C D E

Octave Up

Synopsis: Increases the octave by 1

Syntax: >

If the octave would go above 7, this macro has no effect.

Example:

PSGPLAY 0,"O4AB>C+DE"

On the VERA PSG using voice 0, changes to octave 4 and plays the first five notes of the A major scale by switching to

octave 5 starting at the C♯

Octave Down

Synopsis: Decreases the octave by 1

Syntax: <

If the octave would go below 0, this macro has no effect. Example:

PSGPLAY 0,"O5GF+EDC<BAG"

On the VERA PSG using voice 0, changes to octave 5 and plays the G major scale from the top down by switching to octave

4 starting at the B

Tempo

Commander X16 Programmer's Reference Guide

- 136 -

Synopsis: Sets the BPM, the number of quarter notes per minute

Syntax: T<1-255>

High tempo values and short notes tend to have inaccurate lengths due to quantization error. Delays within a string do keep

track of fractional frames so the overall playback length should be relatively consistent.

Low tempo values that cause delays (lengths) to exceed 255 frames will also end up being inaccurate. For very long notes,

it may be better to use legato to string several together.

Example:

10 FMPLAY 0,"T120C4CGGAAGR"

20 FMPLAY 0,"T180C4CGGAAGR"

On the YM2151 using channel 0, plays in the current octave the first 7 notes of Twinkle Twinkle Little Star, first at 120 beats

per minute, then again 1.5 times as fast at 180 beats per minute.

Volume

Synopsis: Set the channel or voice volume

Syntax: V<0-63>

This macro mirrors the PSGVOL and FMVOL BASIC commands for setting a channel or voice's volume. 0 is silent, 63 is

maximum volume.

Example:

FMPLAY 0,"V40ECV45ECV50ECV55ECV60ECV63EC"

On the YM2151 using channel 0, starting at a moderate volume, plays the sequence E C, repeatedly, increasing the volume

steadily each time.

Panning

Synopsis: Sets the stereo output of a channel or voice to left, right, or both.

Syntax: P<1-3>

1 = Left

2 = Right

3 = Both

Example:

10 FOR I=1 TO 4

20 PSGPLAY 0,"P1CP2B+"

30 NEXT I

40 PSGPLAY 0,"P3C"

On the VERA PSG using voice 0, in the current octave, repeatedly plays a C out of the left speaker, then a B♯ (effectively a C

one octave higher) out of the right speaker. After 4 such loops, it plays a C out of both speakers.

Instrument change

Synopsis: Sets the FM instrument (like FMINST) or PSG waveform (like PSGWAV)

Syntax: I<0-255> (0-162 for FM)

Note: This macro is available starting in ROM version R43.

Example:

Commander X16 Programmer's Reference Guide

- 137 -

10 FMINIT

20 FMVIB 200,15

30 FMCHORD 0,"I11CI11EI11G"

This program sets up appropriate vibrato/tremolo and plays a C major chord with the vibraphone patch across FM channels

0, 1, and 2.

