
RetroComputingonthe

a friendly computer guide

commanderx16.com

1st Edition

Copyright © 2022 Jestin Stoffel

Licensed under the Creative Commons Attribution-NonCommercial 4.0
License (the “License”). You may not use this file except in compliance
with the License. You may obtain a copy of the License at https://
creativecommons.org/licenses/by-nc-sa/4.0. Unless re-
quired by applicable law or agreed to in writing, software distributed un-
der the License is distributed on an “as is” basis, without warranties
or conditions of any kind, either express or implied. See the License
for the specific language governing permissions and limitations under
the License.

https://www.commanderx16.com
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0

RETRO
COMPUTING

ON THE

Commander X16
A friendly computer guide

I

PREFACE
You are about to meet a computer that feels out of place for its time.
It is slower, larger, and more expensive than most computers of its era.
In many ways, it is a technological anachronism designed for a niche
market of hobbyists and enthusiasts. But that’s not all.

The Commander X16 reaches into the past and brings back many things
that were lost. It is a computer that recaptures the ”soul” of the early
days of home computing. Together with this manual, anyone should
be able to sit down and begin to explore computing with all the modern
layers of abstraction stripped away. No prior knowledge of computing
or even typing should be required in order to start your journey into the
world of computers!

This manual should be readable by experts and novices alike. Even chil-
dren as young as 6 or 7 should be able to follow along with the step-
by-step examples. There is no reason you need to read this manual in
order. After reading Chapter 1 (Getting Started) you can go directly to
a chapter that interests you and start reading. The first page of each
chapter contains a small sample program to type in. Type it exactly for
a demonstration of what you will learn in that chapter. The rest of the
chapter will explain the details as you read, and contain more sample
programs to try out.

The Commander X16 was created with the intention that you can sim-
ply turn it on and start learning, doing, and creating. The friendly blue
screen and colorful butterfly logo invite you to start typing BASIC com-
mands and programs. The built-in SD card reader allows you to save
your work as well as load the programs and art that others create, all
without needing to troubleshoot expensive antique disk drives and data
sets...although it supports those too!

Computers have become an important part of our everyday lives, and
yet most people never delve past the surface of the user interfaces pre-
sented to them. Children are given touch screen devices before they
can even talk, and adults go through their entire lives without learning
about the magic that happens behind their screens. The Commander
X16 reverses this trend by putting the user back in control of a computer
that they can fully understand.

The Commander X16 is the perfect computer for this day and age!

II

TABLE OF CONTENTS

PREFACE . II

SETUP . IV

1 Getting to Know Your Commander X16

Getting Started . 3

Your First Computer Program . 9

2 Using the Screen and Keyboard

Graphic Chracters . 17

Colors . 18

The X16 Keyboard . 19

Screen Modes . 20

Editing Text . 21

3 Graphics

More Stuff . 25

4 Sound

More Stuff . 29

5 APPENDIX

Commander X16 BASIC . 32

III

BASIC Statements Table . 112

Screen Codes . 121

PETSCII Codes . 124

Memory Map . 127

65c02 OP Codes . 131

FM Instrument Patch Presets . 132

Macro Language for Music . 136

YM2151 Registers . 144

IV

SETUP
Autem eos placeat est in iure. Qui tempora ut ut qui dolores unde. Nesci-
unt omnis cum iusto laboriosam ut. Amet similique omnis sit maxime
laudantium. Nobis delectus ut corrupti et excepturi. Aut amet error
cumque eaque explicabo quo unde. Minus consectetur error atque ut.
Alias ut repudiandae eum eum. Quaerat rerum facilis suscipit dolores
qui consequatur aut perferendis. Et alias est autem fugit enim nobis qui
illo. Error nesciunt et adipisci ex nostrum. Laudantium sit et ut est volup-
tatum dolor. Ea vitae soluta consectetur vel culpa reiciendis. Ad est of-
ficiis ut consectetur sint voluptatem aut dolor. Tempora consequuntur
suscipit asperiores exercitationem. Harum officia nisi omnis ut iste re-
rum. Consequatur tempora maxime ipsa velit sit. Consequatur ipsum
necessitatibus autem ut saepe eum quod ea. Omnis qui non et min-
ima perferendis sunt repudiandae. Voluptas minima earum est libero
inventore corporis est sint. Occaecati odio distinctio est. Ab quidem
asperiores deleniti soluta debitis exercitationem veniam. Ut sit quo ac-
cusantium velit quam voluptatum quia quia. Non sed non consequatur
corrupti sed libero. Vitae dolores id distinctio enim magni sed omnis.
Voluptates ipsa animi et a iusto. Qui doloribus ducimus voluptas sunt
quidem similique animi blanditiis. Cupiditate dolorum quia illo. Totam
sit consequatur quos. Ipsa dolorum dolor dolores ad deserunt eum deb-
itis. Id quae porro eligendi tempora magni qui odit. Recusandae et
placeat officia blanditiis perspiciatis quaerat. At saepe perspiciatis expli-
cabo. Non sit quam exercitationem sequi commodi tempore et quasi.
Tempora distinctio et voluptatum reiciendis qui minus deleniti. Quidem
officiis eveniet debitis voluptas sint provident numquam architecto. Eli-
gendi quibusdam rerum debitis possimus et ratione enim quasi. Placeat
minus beatae sed aut est. Itaque quisquam eum adipisci enim rerum qui.
Dolor at veniam est molestiae. Sed velit sunt est consequatur suscipit.
Quisquam et ipsum qui est et accusantium porro omnis. Asperiores
enim eos eos. Unde officiis quo est ex expedita odit. Vel maiores an-
imi non dolor molestiae quia rerum aut. Vel tempore non doloremque
sint nesciunt. Ipsa voluptas qui repellat id earum temporibus ut soluta.
Pariatur esse beatae autem et consequatur repellendus cum dolores. A
aliquam porro voluptatem repellat dolorem. Doloribus voluptas asper-
natur in veniam est iusto.
Eveniet dolorum maiores vitae. Rerum culpa et consequatur. Cumque
tenetur dolorem autem voluptatum. Omnis aut nihil odio ipsam et. Fu-

V

giat fuga molestias earum ut neque odit. Cumque odio sapiente qui aliq-
uid. Veritatis quasi voluptates quis illo accusantium. Dolorum vitae sunt
et quis eos incidunt vel iusto. Aliquam eos eaque aut qui placeat ut modi.
Modi ipsa quas dolor qui nam. Deserunt magnam officiis sunt harum as-
pernatur rem voluptas tempore. Consequuntur consequatur in vel velit
architecto quo cumque. Ea aspernatur pariatur velit eveniet quibusdam
atque officiis. Quidem tempore quia consectetur autem alias necessi-
tatibus rerum. Accusantium similique odio ut consectetur qui est. Quia
modi laudantium minima et cumque et qui. Doloribus magni quia cum
totam porro. Voluptas corporis ea blanditiis possimus omnis maiores.
Quo autem esse eligendi occaecati eos nihil. Quae eius inventore re-
cusandae molestiae qui autem veniam. Doloribus quos deleniti con-
sequatur saepe saepe rerum maxime aliquam. Ut sed ipsam dolorum
maxime laboriosam hic quibusdam est. Et consequatur aut provident
numquam aut quisquam. Officia nulla atque aut illum rerum deserunt
dolor maxime. Ea libero est doloremque odio.

VI

111111111111111111111
Getting to Know
Your Commander
X16

Getting Started

Your First Computer Program

1

Try typing this program:
Type this program exactly as shown and see what
happens!

1 PRINT ”X16” RETURN

2 GOTO 1 RETURN

Type R U N and hit RETURN

To stop the program, press the RUN
STOP key.

This line tells the X16 to print
what’s between the quotation
marks.

This line tells the X16 to go back
to Line 1 and print it again.

Typing the word RUN makes
the program run.

2

Getting Started

Congratulations! Your Commander X16 is up and running and ready to
accept your first commands. When it starts, it should display a mes-
sage at the top letting you know that it is running BASIC and how much
memory is available. There will also be a white blinking rectangle called
a cursor. This is how the X16 signals that it is waiting for you.

The Start Screen

**** X16 BASIC ****
512k HIGH RAM
38655 BASIC BYTES FREE

READY. The X16 is
saying it’s
ready.

X16 TIP: DELETING CHARACTERS

If you type a character on the screen that you don’t want,

press the BACKSPACE key. This key will erase the character
immediately to the left of the cursor.

Use this key as often as you like to delete unwanted charac-
ters.

3

A Quick Experiement
It’s time to start pressing keys and giving your Commander X16 some-
thing to do! Press the following keys:

P R I N T

As you press each key, the cursor moves to the right. The cursor will
always show you where the next character will be typed. Next, locate

one of the SHIFT keys on the keyboard. There will be one on the right
and one on the left, but they both do the same thing: modify another

key when pressed at the same time as SHIFT .

Hold down the SHIFT key and press the ”
’ key. The screen

should now look like this:

**** X16 BASIC ****
512k HIGH RAM
38655 BASIC BYTES FREE

READY.
PRINT” You typed this.

Pressing the ”
’ key while holding down SHIFT caused the "

character to by typed instead of the ' character.

Now let’t type a word. Without holding down any other keys, press
these keys:

B U T T E R F L Y

Finally, hold down the SHIFT key, and press the ”
’ key one

4

more time. The screen should now show:

**** X16 BASIC ****
512k HIGH RAM
38655 BASIC BYTES FREE

READY.
PRINT”BUTTERFLY”Everything you typed is

on this line.

If something doesn’t look correct, use the BACKSPACE key to delete
characters and then you can re-type them.

Once everything looks correct, find the RETURN key on the keyboard
and press it once. Now look at your screen.

**** X16 BASIC ****
512k HIGH RAM
38655 BASIC BYTES FREE

READY.
PRINT”BUTTERFLY”
BUTTERFLY

READY.

You typed this.

The cursor was here when you

pressed the RETURN key.

The Commander X16 printed
these.
The Commander X16 printed
these.
The Commander X16 printed
these.

Pressing the RETURN key told the X16 that you were finished typing
your command. Then the X16 looked at the command you typed, saw
that it was something it knows how to do, and then did it. In this case,

5

your command told the X16 to PRINT a message to the screen, The
X16 knew what to print because you told it that as well by placing your
message between the quotation marks.

When the X16 finishedPRINTing the wordBUTTERFLY, it let you know
by displaying the READY message and blinking the cursor.

NOTE:

If you are not using an official Commander X16 keyboard,

then you probably won’t have a RETURN key, but instead

have an ENTER key. Don’t worry, they are the same thing.

Your Own Experiments
Now that you’vePRINTed something to the screen, tryPRINTing other
things. Can you make the Commander X16 say HELLO? Can you make
it say your name?

Here are some things to keep in mind:
• Make sure you spell the word PRINT correctly
• Put your message between quotation marks ("). Make sure you

have one quotation mark at the beginning and one at the end

• Run your command by pressing RETURN

• If something isn’t working as you expect, continuing reading to
learn about errors

Making A Mistake On Purpose
What happens if you type something wrong? Anyone who spends any
amount of time using a computer is going to mistype a command. Let’s
find out what happens by making a mistake on purpose. That way, we
understand what is happening when we make a mistake by accident.
Let’s make a mistake!

6

Try typing our first command, but this time misspell PRINT by forget-
ting the I and typing PRNT instead:

READY.
PRNT”BUTTERFLY”

This is a very easy mistake to make, and at a glace you won’t even notice

that the command is wrong. Now press RETURN to run this command.
You should see an error message:

READY.
PRNT”BUTTERFLY”

?SYNTAX ERROR
READY.

The X16 lets you know
that something is
wrong.

Printing ?SYNTAX ERROR to the screen is how the X16 tells you that
you typed something that it does not understand. In this case, you
typed PRNT instead of PRINT.

For now, don’t worry about these errors. Just do you best to you type

your commands correctly before you press RETURN .
As you experiment with typing commands, the screen will scroll down
to give you more room to type and more room for the Commander X16
to print the results of your commands. You may want to clear the screen

7

and bring the cursor back to the top. The Commander X16 has a built-in
way to do this without even typing a command:

Hold down the SHIFT key and press the CLR
HOME key.

This clears the screen immediately and places the cursor at the top of
the screen.

X16 TIP: CLEARING THE SCREEN

Clearing the screen will be one of the most frequent things
you do while working on your Commander X16. It is worth

memorizing the SHIFT CLR
HOME key combination so that

you don’t have to reference this manual every time you
want to start with a fresh screen.

You can also clear the screen by typing the CLS command

and pressing RETURN , but most people prefer to use

SHIFT CLR
HOME .

8

Your First Computer Program

Now that you are comfortable typing commands, it’s time to write a
series of commands to be executed at once. This is what is called a com-
puter program. Let’s begin.

STEP 1: Clear the screen by holding down the SHIFT key and

then pressing the CLR
HOME key at the same time.

STEP 2: Type N E W and press the RETURN key.

STEP 3: Type 1 0 SPACE P R I N T SPACE

” X 1 6 ” ; and press RETURN .

STEP 4: Type 2 0 SPACE G O T O SPACE 1

0 and press RETURN .

NOTE:

• The SPACE key is the large, wide key at the bottom
of the keyboard. It should be the only key with nothing
printed on it.

• The ” key is simply the ”
’ key pressed while

holding down the SHIFT key.

• the ; key is the
:
; pressed while not holding

down the SHIFT key. It is next to the ”
’ key.

When you are finished, the screen will look like this:

9

NEW

READY.
10 PRINT” X16”;
20 GOTO 10

The X16
typed this.

The cursor
shows that
the X16 is
waiting.

You typed
this and
then
pressed
RETURN .

You typed
this and
then
pressed
RETURN .

You typed
this and
then
pressed
RETURN .

X16 TIP: EDITING MISTAKES

You can retype a line anytime and the Commander X16 will
replace the old line with the new one. For example, if you
mistyped the command PRINT on line 10:

10 PRNNT " X16";
20 GOTO 10

You can skip down by hitting RETURN a few times and type:

10 PRINT " X16";

Now the new line has replaced the old line in your program!
If you want to make sure, type L I S T to tell the
X16 print out your entire program to the screen. Replacing
lines is also a quick way for you to experiment while writing
programs.

Typing the line number and immediately hitting RETURN

will delete the entire line from your program.

If your program looks correct, it’s time to tell the X16 to run your pro-

10

gram. To do this, type R U N RETURN .

The screen should be filled with X16:

X16X16X16X16X16X16X16X16X16X1
6X16X16X16X16X16X16X16X16X16X
16X16X16X16X16X16X16X16X16X16
X16X16X16X16X16X16X16X16X16X1
6X16X16X16X16X16X16X16X16X16X
16X16X16X16X16X16X16X16X16X16
X16X16X16X16X16X16X16X16X16X1
6X16X16X16X16X16X16X16X16X16X
16X16X16X16X16X16X

This text is scrolling up the screen because the program is continuing
to add new text at the bottom. The X16 allows you to slow this down

by pressing the CTRL key. Just like the SHIFT key, there are two of

CTRL keys on your keyboard; one on each side. Holding CTRL tells
the X16 to reduce how fast it prints to the screen. This is useful when
debugging programs that move too fast for your eyes to see clearly.

With your program running, you no longer have a cursor that is waiting
for you to type. To stop your program and bring back the cursor, press

the
RUN
STOP key. This should stop the program, and display a message,

and then print the READY prompt followed by the cursor:

11

X16X16X16X16X16X16X16X16X16X1
6X16X16X16X16X16X16X16X16X16X
16X16X16X16X16X16X16X16X16X16
X16X16X16X16X16X16X16X16X16X1
6X16X16X16X16X16X16X16X16X16X
16X16

BREAK IN 10
READY.

The word BREAK is how the X16 tells you that the program has stopped,
and it also tells you which line it stopped at. In this case, the program
broke at line 10. This does not mean anything is broken. It’s just the
word that the computer uses to let you know that it has stopped in the
middle of a program.

Now that the program has stopped running, the cursor reappears to let
you know that the X16 is waiting for you to tell it what to do. This allows
you to change your program in some way before you run it again. It
would be nice to be able to see your program printed to the screen so
that you know what to change. To do this, use the LIST command by

typing L I S T RETURN . You should now see your program
on the screen so that you can make edits. When you want to run it again,
simply move the cursor to a blank line and use theRUN command again.

Don’t forget to type RETURN after you type the command!

By repeating this process of writing, running, stopping, and editing your
program, you can take your time to make your program run the way
you want it to run. You don’t have to get everything correct right away.
Even the best computer programmers rarely get their programs to run
correctly the first time it runs.

12

X16 TIP: EDITING YOUR PROGRAM

When your program is LISTed out to the screen, you can
edit it in place by moving the cursor to the lines you want to
edit. The cursor can be moved by using the arrow keys on
the keyboard. Once you are on the line you wish to edit, you
can type over top of the characters that are already there or

use the BACKSPACE key to delete them and retype the line.

On each line you change, make sure to press the RETURN

key while on the line. Otherwise, the Commander X16 will
not replace the old line with the new one.

You have just been introduce to several aspects of the Commander X16
that you will use in many of the later chapters. You have:

• PRINTed messages to the screen.

• Cleared the screen with the SHIFT and CLR
HOME keys.

• Written your first program and created a scrolling display.

• Slowed down the program with the CTRL key.

• Stopped the program with the
RUN
STOP key.

• LISTed the program.
• Learned ways to edit your program.

As you explore this guide, you will find yourself using these lessons of-
ten. Don’t worry if there are things you don’t understand. Future chap-
ters will go into more details about what you have learned here. It’s also
important to know that the best way to learn is by experimenting for
you yourself.

This guide is designed so that you can go directly to any chapter that
looks interesting to you.

13

222222222222222222222
Using the Screen
and Keyboard

Graphic Chracters

Colors

The X16 Keyboard

Screen Modes

Editing Text

15

Try typing this program:
Type this program exactly as shown and see what
happens!

10 PRINT ” SHIFT CLR
HOME ”

20 FOR T = 1 TO 900: NEXT
30 PRINT ”your name”
40 FOR T = 1 TO 900: NEXT
50 GOTO 10

Type R U N and hit RETURN

To stop the program, press the RUN
STOP key.

16

Graphic Chracters

Perspiciatis et voluptate eos et dolores placeat. Sit nisi unde perferendis
ad omnis. Vel quidem ipsa aliquid. Beatae qui amet consequatur volup-
tatibus quaerat eos. Corrupti ab pariatur ipsa ipsam. Esse labore quasi
quisquam ipsa reiciendis. Sequi ipsum numquam id sequi similique iure.
Et sed illum est. Eum tempora distinctio maxime rem numquam. Re-
rum dolor sequi sequi beatae corporis incidunt autem. Quisquam iusto
dignissimos libero hic aliquam. Excepturi ullam quibusdam accusamus
et voluptatem amet. Fugit iure vel debitis dolor in omnis distinctio. In
quia pariatur odit quia corrupti autem. Ipsum quo ut dolor ratione vi-
tae. Voluptatem est explicabo sunt nemo. Voluptatibus laborum eve-
niet iste rerum non asperiores. Cumque velit aspernatur quidem neque
tempore. Quia voluptas quis quia perferendis fugiat iure ex atque. Quia
beatae quam pariatur ullam quis sunt consequuntur. Aut deserunt ad
repellat aut et hic voluptatem. Numquam deleniti ut culpa. Magni eius
expedita et dignissimos dolorem perspiciatis libero. Velit rem eius in-
cidunt consequatur sed fugiat non dolor. Laudantium qui laudantium
neque cumque veniam eos ducimus.

17

Colors

Sapiente voluptas aut accusamus. Distinctio et reiciendis ut qui aliquam
fuga. Possimus cumque dolores non. Tempora facilis ratione ut cu-
piditate ducimus tenetur laborum vel. Eligendi sapiente maxime tem-
poribus temporibus qui suscipit. Tempora omnis exercitationem rem
perspiciatis sunt. Dolorum quisquam est excepturi est a magni conse-
quatur. Animi non ea provident. Aut nihil non ducimus dolorem volup-
tatibus eius quos. Distinctio placeat cupiditate consequatur totam rep-
rehenderit nihil est. Voluptatibus voluptatem quam veniam at et. No-
bis quos voluptatibus labore autem. Mollitia sed iusto hic eius et. Nobis
eaque qui id aliquam odit id. Consequatur quis et eos sint dolor eum
omnis quo. Quod voluptatem consequatur odio. Dicta vero numquam
minus. Aut maiores est molestiae eligendi occaecati rem suscipit eos.
Et maxime aliquam voluptatem. Voluptatem sed neque est. Quia ut
omnis exercitationem aperiam tenetur perferendis qui. Qui magni alias
consequatur voluptatum rerum a. Exercitationem et magnam nulla odio
blanditiis voluptas cum quibusdam. Quo tenetur animi autem quia alias
vitae dolorem. Numquam error vero voluptatum.

18

The X16 Keyboard

Molestiae ad dicta praesentium et. Placeat magnam nihil est animi vel
eos. Sunt consectetur nobis minima ut reiciendis hic non sed. Officiis
sint voluptas non quo eos architecto. Nulla et est laboriosam volup-
tatem. Iure sed et ducimus nostrum est eveniet. Natus aut praesentium
fugit. In quae tempora sunt autem illum perspiciatis. Amet laborum
numquam aut occaecati. Quia ad ab voluptas qui autem. Qui volupta-
tum quibusdam est aliquam in. Quae ipsum aperiam aut saepe moles-
tiae natus sit. Totam autem veritatis deserunt. Hic ut excepturi porro.
Et ut vero voluptas iusto earum velit rerum. Assumenda enim volup-
tatum praesentium quam. Rerum optio iste odit. Id quia ratione quasi.
Doloremque et omnis autem dolor. Vel minima numquam enim asperi-
ores quae magni soluta a. Corrupti sint sit sunt cum sunt asperiores an-
imi rerum. Consectetur sunt itaque ducimus soluta sed quod qui. Blan-
ditiis alias rem ea. Doloremque nobis voluptas eius occaecati mollitia
temporibus enim ut. Quia consequuntur molestias quae modi conse-
quatur eveniet consequuntur.

19

Screen Modes

Minima ut quasi aliquid sapiente quo. Id veritatis ipsa vitae molestias
velit modi natus et. Quia incidunt totam laboriosam nostrum sed ni-
hil. Assumenda reiciendis molestiae quidem enim quis. Eius excepturi
neque dolorem quia. Nesciunt et consequuntur expedita enim soluta in
recusandae. Reprehenderit rerum ut facilis aut eius. Velit eveniet esse
dolorem dolores tempore ratione tempora. Iste sequi architecto do-
lores repellendus rem quia sequi. Voluptas error maxime ipsam est sint
saepe. Nulla similique eos dolorem esse nobis autem nam a. Aut fugit
quae reprehenderit qui. Minima dolorum nihil sapiente dolorem porro
minima id. Perspiciatis natus numquam voluptatum. Qui sint nemo
praesentium exercitationem voluptatem esse. Et perferendis praesen-
tium voluptatibus. Occaecati facere eligendi eos eum exercitationem.
Nobis aperiam inventore laudantium eius consequatur cupiditate. Tem-
pora dolore culpa magni ut eum sint voluptatibus. Quasi repudiandae
necessitatibus repellendus cumque quia dolorum. Illo et ut qui. Ut alias
et quod repellat sit nobis. Officiis doloremque quaerat vitae iste. Et nos-
trum pariatur dolorum iusto nulla quae ab. Et voluptatem itaque quae
perspiciatis quia.

20

Editing Text

Ea repudiandae laboriosam omnis consequatur omnis quam nesciunt
est. Hic voluptate explicabo sint pariatur mollitia. Omnis asperiores in
praesentium dolor quibusdam. Odit vitae possimus ut recusandae quia
sapiente ipsum non. Optio error velit eligendi. Facere itaque tenetur
fugiat. Aspernatur magnam tenetur nulla aspernatur architecto. Re-
pellat repudiandae autem sunt qui. Libero vel dolorem sed mollitia.
Voluptatem eligendi minima voluptatum facere aut magnam laborum
vel. Quis rem officia aliquam nisi quisquam dolor quia. Nobis magni non
eos explicabo. Qui nisi in est voluptatem enim a repellendus. Id quia in-
cidunt enim sint impedit recusandae. Ut sit ut neque. Et sit delectus id
excepturi. Vero maiores libero minus. Ad accusantium sed ut vitae quia
earum. Iusto fugit repudiandae aut. Illum atque et dolores. Suscipit qui
culpa dolor. Voluptatibus consequuntur culpa ab vitae. Totam libero
harum quia. Ipsa aut minima labore eaque eos ipsam. Nulla quae eius
tempore.

21

333333333333333333333
Graphics

More Stuff

23

Try typing this program:
Type this program exactly as shown and see what
happens!

NEW
10 SCREEN 128
20 FOR I=0 to 15
30 Y = I * 15
40 RECT 0,Y,319,Y+14,I
50 NEXT I

Type R U N and hit RETURN

To stop the program, press the RUN
STOP key.

24

More Stuff

Minima consequuntur voluptatem nemo et qui adipisci. Voluptate volup-
tas nesciunt illo labore asperiores. Aut provident quisquam ipsum illum
id sed. Aliquam et ipsa exercitationem corrupti iste cum. Voluptatem
ducimus maiores magni. Qui ut vitae suscipit nesciunt. Quos amet
nemo non aut reiciendis aut sapiente. Veniam tempore in sit rerum
quam esse. Quod dolores inventore architecto autem et corporis conse-
quatur. Blanditiis vitae ullam et nostrum. At magnam fugit rerum eaque
accusantium facere atque tempora. Natus sunt odit ea accusamus nihil
ut. Quos sequi veniam odit quo saepe. Ad maiores molestiae molestias
provident ex. Qui perspiciatis molestiae quo nisi soluta ut ullam quasi.
Consectetur est iusto in ea ea voluptate. Sunt dolor est omnis aut. Il-
lum autem magnam vero alias animi. Delectus eos ad iste sit occaecati
sit. Doloremque eum doloribus inventore autem. Illum quia necessitat-
ibus quia iste aut consequatur. Tempore tenetur perspiciatis aperiam
nemo aut est voluptatum reiciendis. Nihil tempora laboriosam quia re-
iciendis natus quo perferendis. Nihil repellat corrupti illum sit quo nam.
Sit laudantium quos hic.

25

444444444444444444444
Sound

More Stuff

27

Try typing this program:
Type this program exactly as shown and see what
happens!

10 FMINIT
20 FMINST 0,0
30 FMINST 1,0
40 FMINST 2,0
110 FMPLAY 0,”T140L6S1O5ED+ED+EO4BO5DC”
120 FMCHORD1,”O4A”
130 FMPLAY 0,”O1AO2EAO3CEA”
140 FMCHORD1,”O3B”
150 FMPLAY 0,”O1EO2EG+O3EG+B”
160 FMCHORD1,”O4C”
170 FMPLAY 0,”O1AO2EAO3EO5ED+”
180 FMPLAY 0,”O5ED+EO4BO5DC”
190 FMCHORD1,”O3A”
200 FMPLAY 0,”O1AO2EAO3CEA”
210 FMCHORD1,”O3B”
220 FMPLAY 0,”L6O1EO2EG+O3EO5CO4B”
230 FMCHORD 0,”L1 O1AO3C+A”

Type R U N and hit RETURN

To stop the program, press the RUN
STOP key.

28

More Stuff

Minima consequuntur voluptatem nemo et qui adipisci. Voluptate volup-
tas nesciunt illo labore asperiores. Aut provident quisquam ipsum illum
id sed. Aliquam et ipsa exercitationem corrupti iste cum. Voluptatem
ducimus maiores magni. Qui ut vitae suscipit nesciunt. Quos amet
nemo non aut reiciendis aut sapiente. Veniam tempore in sit rerum
quam esse. Quod dolores inventore architecto autem et corporis conse-
quatur. Blanditiis vitae ullam et nostrum. At magnam fugit rerum eaque
accusantium facere atque tempora. Natus sunt odit ea accusamus nihil
ut. Quos sequi veniam odit quo saepe. Ad maiores molestiae molestias
provident ex. Qui perspiciatis molestiae quo nisi soluta ut ullam quasi.
Consectetur est iusto in ea ea voluptate. Sunt dolor est omnis aut. Il-
lum autem magnam vero alias animi. Delectus eos ad iste sit occaecati
sit. Doloremque eum doloribus inventore autem. Illum quia necessitat-
ibus quia iste aut consequatur. Tempore tenetur perspiciatis aperiam
nemo aut est voluptatum reiciendis. Nihil tempora laboriosam quia re-
iciendis natus quo perferendis. Nihil repellat corrupti illum sit quo nam.
Sit laudantium quos hic.

29

555555555555555555555
APPENDIX

Commander X16 BASIC

BASIC Statements Table

Screen Codes

PETSCII Codes

Memory Map

65c02 OP Codes

FM Instrument Patch Presets

Macro Language for Music

YM2151 Registers

31

Commander X16 BASIC

This manual has introduced you to the BASIC language and many of the
commands, operators, and conventions. However, that is not enough
in order to truly understand how to use BASIC. This appendix is a refer-
ence that aims to provide a complete documentation for Commander
X16 BASIC. It will provide the rules (known as syntax) of the BASIC lan-
guage, and concise descriptions of each BASIC command.

To make this information easier to read, it is broken up into the follow-
ing sections:

1. Variables: describes what variables are, the different types of vari-
ables, and the allowed variable names.

2. Operators: describes arithmetic and logical operators.
3. Commands: describes the interactive commands that are used

to work with programs or perform other tasks that users typically
type directly into the READY prompt.

4. Statements: describes the statements that are typically used in
BASIC programs, but aren’t often called directly by users from the
READY prompt.

5. Functions: describes the BASIC functions that return values, such
as calculations and string operations.

NOTE:

Commands and statements are not technically different,
and often these terms are used interchangeably. Com-
mands can be used from within BASIC programs and state-
ments can be run directly from the READY prompt. The rea-
son for different labels is because many commands make
little sense when used from within BASIC programs. For ex-
ample, using the NEW command inside a BASIC program will
cause the program to halt execution and be removed from
memory!

32

Variables
Variables are values that have been given names. Programs use vari-
ables for many purposes, and they are an important part of BASIC pro-
gramming. Programmers can assign a value to a variable, and then use
that value later in their program by referring to the variable. For exam-
ple:

10 T$ = "X16"
20 PRINT T$

The above BASIC program stores the value "X16" in a variable named
T$, and then PRINTs the value of T$ to the screen.

Variables are similar to memory addresses except for a couple of key
differences. First, the programmer doesn’t have to keep track of where
a variable is stored in the Commander X16’s memory. This job is per-
formed by BASIC to make the programmer’s job easier. Second, vari-
ables have a type. There are three types of variables in Commander X16
BASIC. The three types of variables are: floating point, integer numeric,
and string (alphanumeric) variables.

Floating Point Variables

Floating point numeric variables can have any value from −1038 to 1038,
with up to nine digits of accuracy. Floating point values can hold partial
values, such as 3.4, 42.7, or 0.000025. This makes them useful for a va-
riety of mathematical uses. Floating point variables can be named with
any single letter, any letter followed by a number, or with two letters1.
For example, A, A5, or AB.

To assign a floating point variable, type your chosen name for the vari-
able followed by an ttfamily = and then the value you wish to assign it:

A = 3.4

1There are three variable names that are reserved by the Commander X16 for its own
use, and cannot be used for variable names in your programs. These names are ST,
TI, TI$, and DA$

33

A5 = 42.7
AB = 0.000025

For numbers that are very large or very small, you may wish to use sci-
entific notation to assign your variables. The Commander X16 under-
stands scientific notation by using the letter E to separate the coeffi-
cient from the exponent (the base is always assumed to be 10). So to
assign the value 3.7× 10−14 to a floating point variable named B2, you
would type:

B2 = 3.7E-14

Not only can you assign floating point variables using scientific notation,
but the Commander X16 will also display values in scientific notation if
they require more than nine digits.

Integer Variables

Integer numeric variables should be used whenever the number will al-
ways be a whole number, and always be between −32768 and 32767.
These are numbers like 1, 5, or−127. Integer variables take up less space
in the Commander X16’s memory, and doing math with integers is faster
than with floating point numbers. Integer numeric variables follow the
same rules as floating point variables, except they must have a % char-
acter at the end. For example:

B% = 5
C5% = -11
BC% = 1261

34

NOTE:

Sometimes when writing numbers we place a , to separate
groups of three digits, such as 1, 000 or 8, 006, 029, 545.
While this makes numbers easier for humans to read, it is
not something that Commander X16 understands. When
typing numbers into your programs, you should never use a
, but instead type the numbers without it. So the previous
numbers would be typed as 1000 and 8006029545.

String Variables

String variables are used to store characters, such as words, sentences,
or any other symbol that you can type. A single string variable can store
either a single character, many characters in a row, or even no charac-
ters at all!String variable names follow the same rules as floating point
variables, except they must have a $ character at the end. The value of
a string variable must be enclosed in quotation marks. For example:

N$ = "COMMANDER X16"
B8$ = "SEVEN"
DC$ = "THE NEXT STRING HAS NO CHARACTERS IN IT"
EC$ = ""

Arrays

Arrays are lists of variables that all share the same name. You can spec-
ify which item, or element, in the list you are using by using a number.
For example, if you have an array of floating point values in a variable
named AB you can use the second value in the array by typing AB(2)
where you would normally type a variable name or a value. You can cre-
ate an array that holds any of the above types of variables, but a single
a array can only hold one type of variable. So an array that was created
to hold seven strings can only hold string variables, and will cause an
error if you try to assign an integer to one of the elements.

35

Unlike other variables, array variables usually2 need to be declared be-
fore using them. You can declare your array variable with the DIM state-
ment like so:

DIM A(25)

This will tell the Commander X16 to reserve enough memory for twenty-
five floating point variables. You can access these variables by indexing
the array variable A when using it, like so:

PRINT A(14)

The above example prints the value of the fourteenth element of A to
the screen.

Arrays can have more than one dimension by declaring them with more
than one index. For example a two-dimensional array can be useful for
storing data arranged as rows and columns. Here is how you would de-
clare an array with 24 rows of 32 columns:

DIM S%(32,24)

The above array can store 32 × 24 integer values. You could even de-
clare arrays with even higher dimensions if you have a need for it. Be
warned, however, as higher dimensional arrays take up exponentially
more memory so you will quickly run out.

Operators
Commander X16 BASIC uses three different types of operators: arith-
metic operators, comparison operators, and logical operators.

Arithmetic Operators
Arithmetic operators are used for mathematical calculations. Here are
the available arithmetic operators:

2see the documentation of the DIM statement for exceptions

36

+ addition
- subtraction
* multiplication
/ division
↑ raising to a power (exponentiation)

When several operators are used in the same arithmetic expression,
there is an order in which the operations execute. First, any exponentia-
tion operations execute. Next, any multiplication or division operations
execute. Finally, any addition or subtraction operations execute. When
there are two or more operations that execute at the same time, such
as a multiplication followed by a division, the operations execute from
left to right. Consider the following:

PRINT 2/4/2

The above code will execute and print.25 to the screen instead of print-
ing 1. This is because 2/4 executes first to produce .5, and then .5/2
executes to produce a final value of .25. If desired, you can force the
order of operations by enclosing calculations inside parentheses. For
example, we could reverse the order of the operations above by typing:

PRINT 2/(4/2)

Now the result is1 because4/2 is executed first to produce2, and then
2/2 executes to produce 1.

Using parentheses is a good practice even when not necessary, because
it makes the intention of the calculation obvious when reading the code.
Had we used them in the original example, it would have made the ex-
ecution obvious at first glance:

PRINT (2/4)/2

The above code is identical to 2/4/2, but is easier to read.

37

Comparison Operators
Comparison operators are useful for determining equalities and inequal-
ities. These are used comparing values against each other to determine
if they are the same, not the same, or which is larger. The comparison
operators are:

= is equal to
< is less than
> is greater than
<= or =< is less than or equal to
>= or => is greater than or equal to
<> or >< is not equal to

Comparison operators are most often used withIF...THEN statements.
For example:

A = 12
IF A > 10 THEN PRINT "GREATER THAN 10"

As you can see from the code above, both variables and literal values
can be used with comparison operators.

Logical Operators
Logical operators are used to join together multiple comparison state-
ments into a single statement. There are three logical operators:

AND is true if both the left side and the right side are true
OR is true if either the left side or the right side are true
NOT is true if the right side is false

By using these logical operators, you can write complex conditions for
your programs. Here’s some examples:

IF A = B AND C = D THEN 100
IF A = B OR NOT (C = D) THEN 100

Notice how parentheses can be used to explicitly force the order in

38

which logical conditions are evaluated, just like how they force the order
in which arithmetic is evaluated.

Commands

Commands are instructions that you type in order to work with pro-
grams on the Commander X16 or perform other user tasks. Commands
tell the Commander X16 to do things, such as LIST the contents of
the SD card, LOAD a program from the SD card, or RUN the currently
loaded program. This section contains a description of each command
in alphabetical order.

BANNER

The BANNER command displays the Commander X16 logo and boot
text, like is automatically displayed upon boot.

BOOT

The BOOT command loads and runs a PRG file named AUTOBOOT.X16
from device #8 (the SD card reader). If the file is not found, nothing is
done and no error is printed.

CLR

The CLR command clears the BASIC variables from memory. This in-
cludes variables that were assigned values while running BASIC pro-
grams as well as any BASIC assignments that were called from theREADY
prompt directly. Variables cleared withCLR cannot be restored with the
OLD command.

The CLR command runs automatically whenever the RUN command is
called, so that each run of a program starts with a cleared variables state.
CLR is not called when the CONT command is run, so that a prgram can
continue where it left off with the variable state in tact.

39

CLS

The CLS command clears the screen. This has the same effect as typ-

ing PRINT CHR$(147); or typing SHIFT + CLR
HOME . This command

is useful when programs and commands have cluttered up the screen,
and is also useful in BASIC programs to PRINTing to an empty screen.

CONT (continue)

When a program has been stopped by either using the
RUN
STOP key,

a STOP statement, or an END statement within the program, it can be
restarted by using the CONT command. The CONT command will con-
tinue executing the loaded program at the exact place from which it left
off, with all the variables intact.

The CONT command will not always work, however. If you make any
modifications to your program while it is stopped, the CONT command
will fail and display a CAN'T CONTINUE ERROR. This is true even if

you LIST the program and hit RETURN while the cursor is on a line
of the program...even if you didn’t make any modifications. To the X16,
this is still considered a change to the program, so the only way to run it
again is to start at the beginning of the program by using the RUN com-
mand.

DOS

This command works with the command/status channel or the direc-
tory of a Commodore DOS device and has different functionality de-
pending on the type of argument.

• Without an argument, DOS prints the status string of the current
device.

• With a string argument of "8" or "9", it switches the current de-
vice to the given number.

• With an argument starting with "$", it shows the directory of the
device.

• Any other argument will be sent as a DOS command.

40

Examples:

DOS"$" : REM SHOWS DIRECTORY
DOS"S:BAD_FILE" : REM DELETES "BAD_FILE"
DOS : REM PRINTS DOS STATUS

HELP

TheHELP command displays a brief summary of the current ROM build,
VERA version, and PS/2 microcontroller code version. It also displays
some URLs for documentation and community support. All of this in-
formation could be useful in troubleshooting issues the Commander
X16.

KEYMAP

The KEYMAP command sets the current keyboard layout. It can be put
into an AUTOBOOT.X16 file to always set the keyboard layout on boot.

Example:

10 REM PROGRAM TO SET LAYOUT TO SWEDISH/SWEDEN
20 KEYMAP "SV-SE"
SAVE"AUTOBOOT.X16" :REM SAVE AS AUTOBOOT FILE

LIST

The LIST command will print the currently loaded BASIC program to
the screen, either in its entirety or only the parts specified by the user.
When LIST is used without any numbers typed after it (known as argu-
ments), you will see a complete listing of the program on your screen.
If the program scrolls off the screen, and you are unable to see the
part that you want, you have a couple of options. First, you can use

the CTRL key to slow down how fast lines are printed to the screen.
The part you wish to see will still scroll off eventually, but you will be
given a much longer time to look at it. Second, you can use the LIST
command with arguments that will limit the listing to only the line or

41

lines that you wish to see. When you follow the LIST command with a
single number, the X16 will list only that line number (if it exists). If you
follow LIST with two line numbers separated by a dash, the X16 will
list all the lines from the first number to the second (including both line
numbers). If you follow LIST with a dash followed by a single number,
it lists from the beginning of the program up to and including the line
number. Finally, if you follow LIST with a number followed by a dash,
it lists from the line number until the end of the program.

Examples:

LIST Shows entire program.

LIST 10- Shows only from line 10 through the end.

LIST 10 Shows only line 10.

LIST -10 Shows from the beginning through line 10.

LIST 10-20 Shows lines from 10 through 20.

LOAD
The LOAD command is used when you want to use a program that is
stored on the Commander X16’s SD card3. Typing LOAD and hitting
RETURN will find the first program on the SD card4 and bring it into

memory to be RUN, LISTed, or edited. You can also type LOAD fol-
lowed by a name of a file in quotes("") to specify which file to load into
memory. The file name argument may be followed by a comma and a
numeric value which specifies a device number. If no number is given,
the X16 uses device #8, which is the SD card reader.

Examples:

3the LOAD command can also be used with other devices, but only the SD card reader
ships with the Commander X16

4The SD card uses the FAT32 disk format, so it’s complicated what makes a file consid-
ered to be the ”first”. It is safer to specify the name of the file when possible

42

LOAD Loads the first program on the SD
card into memory.

LOAD "HELLO.PRG" Loads a program named
HELLO.PRG from the SD card
into memory.

LOAD A$ Loads a program whose name is
stored in the string variableA$ from
the SD card into memory.

LOAD "HELLO.PRG",9 Loads a program named
HELLO.PRG from the drive
configured as device #9.

There are also special file names that can be loaded that perform spe-
cific tasks when used with LOAD:

LOAD "*",8 Loads the first program on device #8 into memory.

LOAD "$" Loads a directory listing of the SD card into memory
which can be displayed with LIST.

The LOAD command can be used with a BASIC program to load and
RUN another program.

MENU

TheMENU command presents the user with a menu of built-in programs
stored in the X16’s ROM. The user can then select a program to run, or
return to BASIC.

43

MON

The MON command causes the Commander X16 to enter the machine
language monitor.

NEW

TheNEW command marks the current program and its variables as erased,
but leaves them in memory. This behavior is so that both the program
and its variables can be restored with the OLD command. The effect is
that the Commander X16 is ready for a new program.

OLD

The OLD command recovers the BASIC program in RAM that has been
previously marked erased either by using the NEW command, by press-

ing the reset button on the case, or by pressing the CTRL + ALT +

DEL key combination on the keyboard.

POWEROFF

The POWEROFF command turns off the Commander X16. It is equiva-
lent to pressing the Power button on the motherboard or case.

REBOOT

TheREBOOT command performs a software reset of the system by call-
ing the ROM reset vector. This performs all the boot routines in the sys-
tem ROM, but does not force the hardware to reset. The REBOOT com-
mand does not clear memory, but does clear any BASIC program that
is loaded. Because it is still in memory, however, a previously loaded
BASIC program can be re-loaded by using the OLD command after a
reboot:

44

NEW
10 PRINT ”EXISTING PROGRAM”
REBOOT

**** X16 BASIC ****
512k HIGH RAM
38655 BASIC BYTES FREE
READY.
OLD
LIST
10 PRINT ”EXISTING PROGRAM”
READY.

REN
TheREN command renumbers a BASIC program while updating the line
number arguments of GOSUB, GOTO, RESTORE, RUN, and THEN. The
REN command takes three optional arguments:

• The line number of the first line after renumbering, default: 10
• The value of the increment of subsequent lines, default: 10
• The ealiest old line to start renumbering, default: 0

Example:

10 PRINT "HELLO"
15 PRINT "CLEAN"
20 PRINT "THIS"
40 PRINT "UP"

45

REN 100,5

LIST
100 PRINT "HELLO"
105 PRINT "CLEAN"
110 PRINT "THIS"
115 PRINT "UP"

RESET

The RESET command performs a full system reset, but does not clear
memory. This means that a BASIC program and its variables can be re-
stored after a RESET by using the OLD command. Unlike the REBOOT
command, this triggers the Commander X16’s hardware reset line, which
may be used by expansion ports to reset custom hardware.

46

NOTE:

There are multiple ways to reset a Commander X16, and
each produces a slightly different result.

The first is by using the CTRL + ALT + RESTORE key
combination. This halts the execution of any program, clears
the screen, and returns the user to the READY prompt. It
does not mark a program or its variables as erased, and so a
program can be RUN again or CONTinued if desired. This is
equivalent to pressing the NMI button on the motherboard.

The second is by using the REBOOT command. This calls the
initial boot up routines, clears any BASIC program, but does
not clear the memory. A previously loaded BASIC program
can be restored with the OLD command.

The third is by using the RESET command. This is equivalent
to pressing the reset button on the motherboard or pressing

the CTRL + ALT + DEL key combination.

The fourth is a cold reboot, where the power to the Comman-
der X16 is lost and then restored. This causes the current pro-
gram and its variables to be completely lost and they cannot
be restored with the OLD command.

RUN

The RUN command executes the program currently loaded into mem-
ory. This program could have been typed in, or it could have been loaded
from the SD card with the LOAD command. When called, the RUN com-
mand will clear the BASIC variables (just like calling the CLR command)
and begin running the program. When no number follows theRUN com-
mand, the program will start executing from the lowest line number in
the program. Otherwise, RUNwill start executing at the given line num-
ber, or the next lowest line number in the program.

47

Examples:

RUN Starts program from lowest line number.

RUN 50 Starts program at line 50.

RUN A UNDEFINED ERROR (RUN cannot be used with a vari-
able to specify a line number).

SAVE

The SAVE command will store the the current program in memory to
the SD card or another storage device. The SAVE command should be
followed either by a file name in quotation marks, or a string variable
that contains the desired file name5. The file name argument can be
followed by a comma and a number or numeric variable. This number
tells the Commander X16 which device to store the file on. Device num-
ber 8 is the SD card drive and is used if no number is given.

If a tape dirve is used with the Commander X16, then a second numeric
argument of either 0 or 1 can be specified after the device number. If
this second is a 1, an END-OF-TAPE marker will be written after the
program. If you are attempting to LOAD a program off a tape drive and
this marker is read before finding the desired file, a FILE NOT FOUND
ERROR will be displayed.

Examples:

5calling the SAVE command without any arguments is technically allowed, but doesn’t
do anything. On the Commodore VIC-20 and Commodore 64 this was useful for
saving the current program to the current position of a tape drive with no name, but
the Commander X16’s default device is an SD card reader where this concept makes
no sense. For historical reasons, the Commander X16 won’t display an error if you run
SAVE with no arguments, but it also won’t do anything

48

SAVE "HELLO.PRG" Saves the program in memory to a
file on the SD card with the name
HELLO.PRG.

SAVE A$ Saves the program in memory to a
file on the SD card the name con-
tained in the variableA$.

SAVE "HELLO.PRG",1 Saves the program in memory to a
file on the drive configured as de-
vice #1 with the nameHELLO.PRG.

SAVE "HELLO.PRG",1,1 Saves the program in memory to a
file on the drive configured as de-
vice #1 with the name HELLO.PRG
and writes an END-OF-TAPE
marker after it.

VERIFY

The VERIFY command will compare the program in memory to a pro-
gram on the SD card or other storage device. If the programs are the
same, the VERIFY command will display an OK message, and if they
differ it will display a VERIFY ERROR message. This command helps
to ensure that a program is safely stored to the SD card or other stor-
age device before the user erases it from memory6. When VERIFY is
called without any arguments, it checks the program in memory against
the first file on the SD card7. When called followed by a file name in
quotation marks or a string variable containing a file name, it compares
the program in memory against the given file. Just like the LOAD and
SAVE commands, the VERIFY command can take a numeric second
argument as a device number.

The VERIFY command can also be used if a tape drive is connected to
the Commander X16 as a storage device. By VERIFYing the last pro-

6this was far more useful in the era or tape drives and floppy disks than it is on the
Commander X16

7this is not particularly useful, but is included behavior for historical reasons

49

gram on the taþe, the position of the tape can be advanced to a safe
section to write over. When VERIFY is complete, whether verification
succeeds or fails, the tape will be positioned at the next available space.

Examples:

VERIFY Checks the first program on the SD
card.

VERIFY A$ Checks the program with name in
variable A$.

VERIFY "HELLO.PRG",1 Checks the program on the drive
configured as device #1 with the
name HELLO.PRG.

Statements

Statements are the instructions used in BASIC on numbered lines of pro-
grams. They are used to define what it is that your program does.

BANK

The BANK statement sets which bank will be used when other com-
mands and statements interpret addresses in the $A000 - $FFFF range.
Because all addresses from $A000 and above are either banked ”high”
RAM or banked ROM, certain commands need to know which bank is
being referred to. Specifically, SYS, POKE, and PEEK all need to know
which bank to use when an address is given in the banked range. The
BANK statement sets the bank for both banked RAM8 and banked ROM,
although setting the banked ROM is optional. The first argument is used
to set the RAM bank, and the optional second argument sets the ROM
bank. To set a bank, call the BANK statement followed by a numeric
value from 0 through 255.

8RAM in bank 0 is reserved for use by the KERNAL, so it is unwise to write values into
there

50

For example, to write some data into ”high” RAM in bank 1:

10 BANK 1
20 POKE $A000,42

Then the bank can be switched, and the same address can be used to
store more data, without overwriting the data in bank 1:

30 BANK 2
40 POKE $A000,23
50 BANK 1 REM SWITCH BACK TO BANK 1
60 PRINT PEEK($A000) REM PRINTS 42, NOT 23

The BANK statement also has some use as a command run from the
READY prompt. It can be used to run programs that are shipped with
the Commander X16 in banked ROM. For example, the CodeX16 Inter-
active Assembly Environment in ROM bank 7 can by run by typing the
following at the READY prompt:

BANK 1,7
SYS $C000

BINPUT#

The BINPUT# statement reads a block of data from an open file and
stores the data into a string variable. The BINPUT# statement takes 3
arguments; the device number, the string variable to store the data into,
and the number of bytes to read from the file. If there are fewer bytes
to be read than the specified number of bytes has been read, only the
bytes available will be stored in the string variable. If the end of the file
is reached, the special variable STwill have its bit 6 set to 1. This means
ST AND 64 will equal TRUE when BINPUT# reads all the way to or
past the end of the file.

Example:

10 OPEN 8,8,8,"FILE.BIN,S,R"
20 BINPUT# 8,A$,5

51

30 PRINT "I GOT";LEN(A$);"BYTES: ";A$
40 IF ST AND 64 THEN 60 REM END OF FILE
50 GOTO 20
60 CLOSE 8
70 PRINT "FINISHED READING"

BLOAD

TheBLOAD statement loads a headerless9 file from a device into banked
RAM. If the file is too large to fit within a bank, theBLOAD statement will
automatically continue writing the file to the next bank. This allows file
resources larger than 8 kilobytes to be used without the need to break
them up into smaller files. This is useful for loading resources for games
and applications into ”high” RAM that programs can then access during
execution.

Examples:

BLOAD "MYFILE.BIN",8,1,$A000 Loads a file named ”MY-
FILE.BIN” from device 8
starting in bank 1 at $A000.

BLOAD "WHO.PCX",8,10,$B000 Loads a file named
”WHO.PCX” from de-
vice 8 starting in bank 10 at
$B000.

BVERIFY
The BVERIFY statement compares a headerless file on the SD card or
other storage device to the contents of banked RAM. As arguments, the
BVERIFY statement takes the name of the file, the device number, the
bank number, and the starting address within the bank. If the file in
question extends past the end of the bank, the BVERIFY statement
will automatically continue checking on the file on the next bank, reset-

9typically on Commodore computers as well as the X16, files are expected to contain a
two-byte header that indicates an address where they are to be loaded into memory.
A ”headerless” file will not have those two bytes

52

ting the address to $A000 as it changes the bank. This allows it to be
used to verify files that are too large to fit inside a single bank of ”high”
RAM.

Examples:

BVERIFY "MYFILE.BIN",8,1,$A000 Compares a file named
”MYFILE.BIN” from de-
vice 8 against the RAM
in bank 1 starting at
$A000.

BVERIFY "WHO.PCX",8,10,$B000 Compares a file named
”WHO.PCX” from de-
vice 8 against the RAM
in bank 10 starting at
$B000.

BVLOAD

The BVLOAD statement loads a headerless file directly into the VERA’s
VRAM. For arguments, the BVLOAD statement takes the file’s name, the
device number where the file is stored, the bank of VRAM on the VERA
(either 0 or 1), and the address within the bank in which to load.

Examples:

BVLOAD "MYFILE.BIN",8,0,$4000 Loads a file named ”MY-
FILE.BIN” from device 8
into VRAM at address
$04000.

BVLOAD "MYFONT.BIN",8,1,$F000 Loads a file named ”MY-
FONT.BIN” from device
8 into VRAM at address
$1F000.

To load a file that has a two-byte header, see the VLOAD statement.

53

CHAR

The CHAR statement draws text to the screen at a given X,Y coordinate
and a given color. The CHAR statement is only available in graphics
mode, and draws the text to the bitmap graphics layer instead of the
text layer. Like other graphics mode statements, the CHAR statement
can draw in all 256 available colors.

10 SCREEN $80
20 CHAR 120,100,14,"COMMANDER"
30 CHAR 180,100,2,"X16"

CLOSE

The CLOSE statement completes and closes any files used by OPEN
statements. The CLOSE statement takes a single argument that is the
file number to be closed.

Examples:

CLOSE 0 Close file 0

CLOSE 4 Close file 4

CMD

The CMD statement is used to send output that would normally go to
the screen to some other device instead. The other device could be a
file on the SD card, a file on a disk or tape drive, a printer, a modem, or
any other device supported by the Commander X16. The device must
first be opened with theOPEN statement followed by a numerical value
that will be used to reference the file or device.

Example:

54

OPEN 1,8,8,"NEWFILE,S,W" OPEN a file named NEWFIL on
the SD card

CMD 1 All normal output now goes to a
file named NEWFILE

LIST The LISTing goes to the file,
not the screen – even the word
LIST

PRINT# 1 Direct the output back to the
screen before closing the device

CLOSE 1 Close file 1

If a BASIC error occurs the data ouput is switched back to the screen,
with the side effect that space characters will be send to the logical file
of the selected device. This is why the PRINT# statement should be
used prior to closing the device.

COLOR

The COLOR statement sets the text mode foreground color, and option-
ally the background color. It takes either one or two arguments, both
are integers from 0 through 15. The first argument sets the color of the
text, and the optional second argument sets the background color. The
numbers given correspond to the first 16 colors of the VERA’s palette10.

Examples:

COLOR 2 Set the text color to red.

COLOR 5,0 Set the text color to green and the background color
to black.

The COLOR statement only effects areas of the screen where new text

10If the VERA’s palette has been modified, then the modified colors are used. The
COLOR statement will not restore the default VERA palette

55

is placed, and will not change existing characters. This makes it conve-
nient to use in programs for drawing diagrams and images with PETSCII
characters, since you can change both foreground and background col-
ors for each individual charater.

DATA

The DATA statement creates a data section of a BASIC program from
which the READ statement will read from. The DATA statement is fol-
lowed by a comma-separated list of values. These values can be in-
tegers, floating point numbers, or strings11. It is important to use the
correct variable type when READing these values, otherwise a TYPE
MISMATCHerror can occur. If two commas have nothing between them,
the value will be interpreted as a 0 for a number or an empty string.

Multiple DATA statements can be used in a program, and when one
has been completely read by enough READ statements, the next READ
statement will read from the next DATA statement. All READ state-
ments in a program can be thought of as a single contiguous block of
data, even if the statements are not grouped together in the program.

Examples:

10 READ A
20 READ B%
30 READ C$
40 PRINT A, B%,C$
50 DATA 34.2,42
60 DATA "COMMANDER X16"

DATA statements do not need to be executed, so they can slow down
a program if placed before code does need to execute. Because of this,
it is best to place all DATA statements at the end of program.

11String values can be specified with or without quotation marks, unless they contain
a space, comma, or colon. Despite this flexibility, it is best practice to always use
quotation marks for string data

56

DEF
The DEF statement defines a calculation as a named function that can
be called by BASIC later. This is useful for complex calculations that a
program does multiple times. The DEF statement is followed by the
function name, which must be FN followed by one or two other char-
acters that make up a legal variable name. This name is followed by a
set of parentheses enclosing a legal numeric variable name. This is fol-
lowed by an equals sign and the formula you want to define, using the
variable in the parentheses like any other variable would be used.

Examples:

10 DEF FNC(R)=2*R*π : REM CIRCUMFERENCE OF A CIRCLE
20 DEF FNA(R)=π*(R↑2) : REM AREA OF A CIRCLE
30 PRINT "CIRCUMFERENCE:", FNC(10)
40 PRINT "AREA:", FNA(10)

Only a single variable can be defined as an argument to a function. The
DEF statement can only be used in a BASIC program (entered with a
line number), but the defined function can be used anywhere a BASIC
function can normally be used.

NOTE:

The � character represents the number PI and is entered by

pressing SHIFT + ← on the keyboard. If you are not using
an official Commander X16 keyboard, then you would need

to press SHIFT +
~
‘ instead.

DIM
The DIM statement is used to dimension an array, which means to al-
locate enough space for the data the array will hold. An array variable
needs to be DIM’d before using it unless it will only hold eleven or fewer
elements. In all other cases, the DIM statement must be used.

57

To dimension an array variable, use DIM followed by the variable name.
Then, the size of each dimension of the array should be given, separated
by commas and surrounded by parentheses. An array can have one or
more dimensions, and each dimension can be as large as needed12. The
total number of elements in an array can be calculated by multiplying
the size of each of the array’s dimensions. The DIM statement can di-
mension multiple arrays at once by separating each array with a comma.

Examples:

DIM A(16) An array of 16 numbers.

DIM B$(26),C%(13) An array of 26 strings and an array of 13
integers.

DIM D(32,4,4) A 3-dimensional array of numbers
where the dimensions are 32, 4, and 4.

Once dimensioned, arrays can be used just like other variables, except
that the index into each dimension must be specified:

10 DIM A$(3,12)
20 A$(1,1) = "ONE"
30 A$(2,6) = "TWO"
40 PRINT A$(1,1) : REM PRINTS "ONE"
50 PRINT A$(2,6) : REM PRINTS "TWO"
60 PRINT A$(1,6) : REM PRINTS NOTHING

Executing aDIM statement on the same array more than once will cause
an error. It is a best practice to keep all the DIM statements towards the
beginning of a program.

END
The END statement will stop a running program just as if it had run out
of lines. The CONT command can then be used to start the program

12as long as all the elements fit into memory

58

again, starting from the line after the END statement. In this way, the
END statement can be used to ”pause” a program and allow the user to
perform other tasks before CONTinuing on with the rest of the program.
For details about the limitations of CONTinuing a program, see the doc-
umentation for the CONT command.

FMCHORD

The FMCHORD statement instructs the FM synthesis chip to begin play-
ing multiple notes at the same time. For arguments, theFMCHORD state-
ment accepts a channel and a string. Because a chord plays multiple
notes at the same time, the channel argument specifies the first chan-
nel to use for the chord, but other channels will be used for subsequent
notes. For example, if you specify a channel argument of 3 for a chord
which plays 4 notes, the FMCHORD statement will play the notes on
channels 3, 4, 5, and 6. It is important to set each of the channels to use
the desired instruments with the FMINST statement. The string argu-
ment is used to specify which notes the FMCHORD statement will play.
For more information on specifying notes, see the chapter on Sound.

Example:

REM PLAY A C MAJOR CHORD ON A PIANO
10 FMINST 0,0:FMINST 1,0:FMINST 2,0
20 FMCHORD 0,"CGE"

FMDRUM

The FMDRUM statement plays a single percussion sound from a set of
percussion instruments. This set comes from the General MIDI stan-
dard Percussion set13, which uses numbers from 25 through 87. The
FMDRUM statement takes two arguments. The first is a channel, and
the second is a drum number from the set. When this statement exe-
cutes, it sets the channel to the selected drum number and plays it. The
channel will retain the drum number set until it is set again with either
FMINST or another call to FMDRUM.

13see the Drum Patch Presets table in the appendix

59

Examples:

FMDRUM 0,38 Play an acoustic snare on channel 0.

FMDRUM 2,50 Play a high tom on channel 2.

FMDRUM 1,55 Play a splash cymbal on channel 1.

FMFREQ

TheFMFREQ statement plays a note on the FM synthesis chip at a given
frequency. This is an alternative to playing a note with FMNOTE, where
instead of specifying a musical note, a frequency in Hertz is specified.
Like FMNOTE and FMDRUM, FMFREQ returns immediately and does not
wait for a note to finish playing. If a Hertz value of 0 is specified, the
channel is immediately silenced.

Examples:

FMFREQ 3,2600 Plays the instrument on channel 3 at 2,600hz.

FMFREQ 0,440 Equivalent to FMNOTE 0,$4A which plays A
above middle C on channel 0.

FMFREQ 2,0 Silences channel 2.

FMINIT

The FMINIT statement is used to set the FM synthesis chip to a known
state, and takes no arugments. It performs initializations on the YM2151
sound chip, as well as loading default patches into all 8 channels. In ad-
dition, it immediately silences the channels. This last function can be
useful for silencing multiple FM channels at once, without having to call
FMNOTE or FMFREQ on each one. The initializations that the FMINIT
statement performs are called automatically when the Commander X16
boots up, so it is not necessary to call FMINIT directly before using
other FM statements. However, it is still a good idea to call FMINIT

60

before using FM statements in a program, especially if the program re-
lies on the default patches. There’s no guarantee that another program
hasn’t modified the state of the FM chip since boot.

FMINST

The FMINST statement assigns an instrument to a channel. The first
argument is the channel, and the second argument is a number indicat-
ing an instrument. The Commander X16’s ROM chip comes pre-loaded
with 146 FM instrument patches from the General MIDI Instrument Set.
These instruments and their numbers can be found in FM Instrument
Patch Presets table and the Extended FM Instrument Patch Presets ta-
ble in the appendix.

FMINST 0,0 Set channel 0 to Acoustic Grand Piano.

FMINST 3,11 Set channel 3 to Vibraphone.

FMINST 7,127 Set channel 7 to Gunshot.

FMNOTE

The FMNOTE statement plays a single note on the FM synthesis chip.
The first argument is the channel, and the second argument specifies
which note. The note argument can be any number, but is intended to
be specified with hexadecimal notation. This is so that the most signif-
icant 4 bits (often called the ”high nybble”) represent the octave while
the least significant 4 bits (the ”low nybble”) represent the musical note.
The lowest note of any octave is C, which is represented with a 1, and
the highest note of any octave isB, which is represented with aC. A note
of0 on any octave will release the note playing on that channel, and the
note values D, E, and F have no effect.

Although this may seem confusing, it is actually convenient for most
uses. For example to play a ”middle C” the note value $41 would be
used. The $ tells BASIC that the value is hexadecimal, the 4 indicates
the note is in the 4th octave, and 1 specifies the note ”C”. Here’s a table
of which nybble produces which note:

61

Nybble $x0 $x1 $x2 $x3 $x4 $x5 $x6
Note Release C C♯/D♭ D D♯/Eb E F

Nybble $x7 $x8 $x9 $xA $xB $xC $xD-$xF
Note F♯/G♭ G G♯/A♭ A A♯/B♭ B no-op

Negative numbers can also be used to specify notes. These will be
treated as the same note, except it will merely change an already-playing
note rather than re-triggering it. This is obviously more useful with some
instruments than with others, but can also be used as a clever way to
create sound effects.

Examples:

10 FMINST 1,64 : REM LOAD SOPRANO SAX
20 FMNOTE 1,$4A : REM PLAYS CONCERT A
30 SLEEP 50 : NEXT X : REM DELAYS FOR A BIT
40 FMNOTE 1,0 : REM RELEASES THE NOTE
50 SLEEP 10 : NEXT X : REM DELAYS FOR A BIT
60 FMNOTE 1,$3A : REM PLAYS A IN THE 3RD OCTAVE
70 SLEEP 25 : NEXT X : REM SHORT DELAY
80 FMNOTE 1,-$3B : REM A# WITHOUT RETRIGGERING
90 SLEEP 25 : NEXT X : REM SHORT DELAY
100 FMNOTE 1,0 : REM RELEASES THE NOTE

FMPAN

The FMPAN statement is used to control the stereo output of an FM
channel. It takes an argument for the channel, and an argument for
which speaker the channel should play from. The second argument val-
ues are as follows:

Left 1
Right 2
Both 3

Examples:

62

FMPAN 0,3 Set channel 0 to play from both speakers.

FMPAN 3,1 Set channel 3 to play from only the left
speaker.

FMPAN 7,2 Set channel 7 to play from only the right
speaker.

FMPLAY

The FMPLAY statement plays a musical melody on a single channel.
FMPLAY takes two arguments; a channel and a string of characters that
tells the FM chip what to play. This second argument is specified in
a custom macro language14, and includes notes, releases, tempos, oc-
taves, rests, and other musical elements. For example, the following
statement will play a major scale in the key of C:

FMPLAY 0,"CDEFGAB>C"

Each letter indicates which note to play. Before playing the final C note,
the > character is used to tell the channel to move up one octave. If this
character wasn’t included, the final C would play at the same octave as
the first C.

The characters + and
ttfamily - can be placed after a note’s letter to indicate sharps and flats,
respectively. For example, the following will play a major scale in the
key of A:

FMPLAY 0,"AB>D-DEF+A-A"

Because a new octave starts on each C note, this scale requires the >
character to be placed between the B and D♭ notes.

14for a complete guide, see the Macro Language for Music appendix

63

X16 TIP: RESTORING OCTAVES

You may have noticed that running these FMPLAY state-
ments multiple times results in them playing in different
octaves. This is because the Commander X16 remembers
which octave each channel was left in. So when using > to
increase the octave on one FMPLAY statement, the channel
stays in that octave during the next FMPLAY statement. This
can be solved in a number of ways:

• An initial octave can be specified at the beginning of
the string with the O macro

• A < character can be placed at the end of the string
to indicate that the channel should move down one
octave

• The octave can be reset with the FMINIT statement.
Just keep in mind that this resets the octaves of all
channels, as well as silencing them and restoring them
to their default instruments

FMPOKE

The FMPOKE statement can be used to write values directly to the regis-
ters of the FM sound chip. To understand what values to write to which
registers, see the appendix on YM2551 Registers.

Using FMPOKE, it is possible to directly interface with the FM chip and
make it do things that are not possible by using the other FM BASIC
statements. For example, FMPOKE can be used to define a new instru-
ment patch instead of using one of the predefined patches.

Examples:

64

FMPOKE $28,$4A Set KC to A4 on channel 0.

FMPOKE $08,$00 Release channel 0.

FMPOKE $08,$78 Start note playback on channel 0 with
all operators.

FMVIB

TheFMVIB statement sets the speed of the FM chip’s LFO, as well as the
depth of the amplitude modulation or phase modulation. The first ar-
gument sets the speed from 0-255, and the second argument sets the
depth from 0-127. The FMVIB statement applies to all channels, and
only to instrument patches that use either amplitude or phase modula-
tion (see the Instrument Patch Presets table in the appendix).

Example:

10 FMINST 0,11 : REM SET CHANNEL 0 TO VIBRAPHONE
20 FMVIB 200,60 : REM SET VIBRATO
30 FMNOTE 0,$4A : REM PLAY CONCERT A

FMVOL

The FMVOL statement sets a channel’s volume. The first argument is
the channel, and the second argument is a value from 0 through 63.
The volume is maintained for the channel, even if the instrument patch
is switched. Only another FMVOL statement or an FMINIT statement
will cause the volume of a channel to change.

Examples:

FMVOL 0,63 Set channel 0 to full volume.

FMVOL 1,31 Set channel 1 to half volume.

FMVOL 2,0 Set channel 2 to no volume, silencing it.

65

FOR
TheFOR statement is used with theTO statement, theNEXT statement,
and sometimes the STEP statement to create a section of a program
that executes a specific number of times. This repeating section of a
program is commonly called a ”for-loop”.

The format of a for-loop is as follows:

FOR <loop variable> = <start> TO <end>
<code to execute multiple times ...>
NEXT <loop variable>

In the above example, <loop variable> can be any legal name for
a floating point variable. Both <start> and <end> are floating point
values, and both variables and constants are allowed.

For example, here is a for-loop that prints the numbers 1 through 10 to
the screen:

FOR X = 1 TO 10
PRINT X
NEXT X

FRAME
The FRAME statement draws a rectangle frame in graphics mode in a
given color. The first two arguments are the x and y coordinates for the
upper left corner of the frame. The third and fourth arguments are the x
and y coordinates for the lower right corder of the frame. The fifth argu-
ment is a number from 0-255 that specifies the color from the current
palette.

Example:

10 SCREEN $80
20 FRAME 10,10,310,230,2

TheFRAME statement is similar to theRECT statment, except thatFRAME

66

does not fill in the rectangle.

GET

TheGET statement gets data from the keyboard one character at a time.
TheGET statement will read a single character from the keyboard cache
and place it into a variable provided as an argument. Any character
can be placed into a string variable, but only numeric characters can
be placed into integer or floating point variables. When the keyboard
cache is empty (no keys are currently pressed), a default value is placed
into the specified variable. For string variables the default value will be
the empty string (""), but for floating point and integer variables the
default value will be 0.0 and 0, respectively.

If there are more than one characters currently in the keyboard cache,
then a single call to GET can retrieve them all by specifying multiple
variables as arguments.

Examples:

GET A$ Read a single character from the keyboard into A$

GET I$ Read a single character from the keyboard into I%,
and cause an error if that character is not numeric

GET F Read a single character from the keyboard into F, and
cause an error if that character is not numeric

GET A$,B$ Read two characters from the keyboard cache intoA$
and B$

A common use for the GET statement is to pause a program in a loop
until the user presses a key:

10 PRINT "PRESS ANY KEY TO CONTINUE"
20 GET A$:IF A$="" GOTO 20
30 PRINT "THANK YOU FOR PRESSING A KEY!"

67

GET#
The GET# statement reads data from a specified logical file one charac-
ter at a time. It is identical to the GET statement except that it requires
a first argument to specify a logical file identifier. The logical file must
first be opened with the OPEN statement. The remaining arguments
work just the same as with the GET statement.

Example:

10 OPEN 1,1,0,"FILENAME" : REM OPEN TAPE DRIVE FILE
20 GET#1,A$: REM READ A CHARACTER FROM THE TAPE

NOTE:

It is a popular convention when using statements and com-
mands that end in # to place the logical file identifier di-
rectly after the command with no space. So instead of
GET# 1,A$ this example shows GET#1,A$.

GOSUB
The GOSUB statement transfers program execution to a specified line
and remembers which line which called GOSUB. This is different than
the GOTO statement which transfers program execution, but does not
have a way to return control to the line which called GOTO. The GOSUB
statement allows for the creation of subroutines (often called functions,
procedures, or methods in other programming languages). After GOSUB
is called and program execution has been transfered to a new line, the
next time a RETURN statement is executed it will transfer program ex-
ecution back to the line directly after the GOSUB statement.

Example:

10 PRINT "FIRST"
20 GOSUB 50
30 PRINT "THIRD"

68

40 END
50 PRINT "SECOND"
60 RETURN

The above program will printFIRST,SECOND, andTHIRD in order. This
is because the GOSUB statement on line 20 transfers execution to line
50, and then the RETURN statement on line 60 transfers execution
back to line 30, which is the line after the GOSUB statement was called.
Line 40 ends the program, which stops line 50 from executing again.

X16 TIP: NESTING SUBROUTINES

It is possible to ”nest” subroutines created by GOSUB such
that a subroutine calls a subroutine which calls a subrou-
tine...and so on! This can be useful for creating BASIC
programs with complex logic.

GOTO
The GOTO statement transfers program execution to the line specified.
Unlike the GOSUB statement, the GOTO statement does not remember
where it was called from, and therefore the RETURN statement will not
return program execution.

Example:

10 PRINT "THIS WILL PRINT"
20 GOTO 40
30 PRINT "THIS WILL NOT PRINT"
40 PRINT "THIS WILL ALSO PRINT"

IF
The IF statement is how decisions are made in BASIC. The IF state-
ment is followed by an expression that evaluates to eitherTRUEorFALSE,

69

and the next statement executed is dependent on the outcome. The ex-
pression is followed by either a THEN statement or a GOTO statement.
A THEN statement is followed by another statement or a line number,
and a GOTO statement is followed by a line number. If the expres-
sion evaluates to TRUE, then the statement following the THEN state-
ment is executed. If a line number is used, either with a THEN or GOTO
statement, then the program will jump to that line number. When the
expression evaluates to FALSE, then the line after the IF statement is
executed.

Expressions can be either a variable or a formula. In both cases a zero
is considered FALSE, and any non-zero value is considered TRUE. In
most cases, the statement will be constructed from variables, compar-
ison operators, and logical operators. See the section on operators for
more details.

Example:

10 A=10
20 IF A=9 THEN 40
30 IF A=10 THEN 60
40 PRINT "THIS SHOULD NOT PRINT"
50 END
60 PRINT "THIS SHOULD PRINT"

INPUT

TheINPUT statement asks the user of a BASIC program for data to store
in a variable. The program will print an optional prompt (much like the
PRINT statement), print a question mark (?), and then wait for the user

to type something and press RETURN .

The optional prompt must be followed by a semicolon (;) and a vari-
able or comma-separated list of variables. When there are multiple
variables, the INPUT statement will stop and wait for the user to type

something and hit RETURN for each one of the variables listed. If no
prompt is given, then the semicolon (;) should not be used.

70

Example:

10 INPUT "PLEASE TYPE A NUMBER";A
20 INPUT "AND YOUR NAME";A$
30 INPUT B$
40 PRINT "BET YOU DIDN'T KNOW WHAT I WANTED!"
50 INPUT "TYPE 2 NUMBERS AND A STRING";A,B,C$
60 PRINT A,B,C$

INPUT#
The INPUT# statement works just like the INPUT statement, but takes
the data from a previously opened file or device. The device number
must be specified before the optional prompt or the variables.

LET
TheLET statement is an optional statement used for assigning variables
in a BASIC program. It is not necessary, but still exists as part of the BA-
SIC language for compatibility purposes.

Example:

10 LET A=5
20 B=6
30 PRINT A+B
40 LET B=7
50 PRINT A+B

The above code prints 11 and 12, respectively, showing that using LET
on variable assignments is optional.

LINE
The LINE statement is used to draw a line in graphics mode. The LINE
statement is passed the X and Y coordinates of the first point, followed
by the X and Y coordinates of the second point, followed by the color
of the line. The LINE statement can only be used in graphics mode,

71

which must be set by calling the SCREEN statement with $80.

Examples:

Draw a red X across the screen.

10 SCREEN $80
20 LINE 0,0,319,239,2
30 LINE 0,239,319,0,2

Draw a rainbow.

10 SCREEN $80
20 FOR I=0 TO 255
30 LINE 159,0,I+32,239,I
40 NEXT I

LINPUT

The LINPUT statement reads input directly from the keyboard, but al-
ways stores the data as a string varible. Unlike the theINPUT statement,
which attempts to parse the value entered into whichever variable type
was supplied by the programmer, theLINPUT stores the data as a string
just as the user typed it. This includes storing any quotation marks, com-
mas, or colons that the user types. The LINPUT statement does not
allow for a prompt to to be specified, so the only argument passed to
the the LINPUT statement is the string variable used to store the user’s
input.

Example:

10 PRINT "ENTER ANY TEXT FOR LINPUT: ";
20 LINPUT A$
30 PRINT A$
40 PRINT "ENTER ANY TEXT FOR INPUT: ";
50 INPUT A$
60 PRINT A$

72

Try running the above program several times, and using the same value
at both prompts. Here’s some values to try:

"TEST"
3,4,5
11:45 AM

You will find that each of the above examples will have a different result
when ready by LINPUT as opposed to INPUT.

LINPUT#

TheLINPUT#works similar to theLINPUT statement, but instead reads
the line from an open file specified by the first argument. When reading
from a file, there are no ”lines” to read from like there is when entering
data with either the INPUT or LINPUT statements, so data is read un-
til a carriage return character (13) is reached. The data is stored in a
string variable supplied as the second argument. The carriage return
character is not included as the input. If the end of the file is reached,
the LINPUT# statement will set the sixth bit of the ST special variable.
This means the end of the file can be detected with ST AND 64.

Example:

10 I=0
20 OPEN 1,8,0,"$"
30 LINPUT#1,A$,$22
40 IF ST<>0 THEN 130
50 LINPUT#1,A$,$22
60 IF I=0 THEN 90
70 PRINT "ENTRY: ";
80 GOTO 100
90 PRINT "LABEL: ";
100 PRINT CHR$($22);A$;CHR$($22)
110 I=I+1
120 IF ST=0 THEN 30
130 CLOSE 1

73

The above example parses and prints out the filenames from a direc-
tory listing.

LOCATE
The LOCATE statement moves the cursor in text mode, allowing a pro-
gram to print text to any part of the screen. The LOCATE statement
takes a line as the first argument, and a column as an optional second
argument. Both the line and the column numbers are 1-based (the first
line is 1 and the first column is 1), the column is 1 if no column argu-
ment is given.

Examples:
LOCATE 20 Move the cursor to line 20 and column 1

LOCATE 20,30 Move the cursor to line 20 and column 30

LOCATE 1,1 Move the cursor to the top left corner

MOUSE
The MOUSE statement shows or hides the mouse cursor by passing a
mode as an argument:

Mode Description
0 Hides the mouse cursor
1 Shows the mouse cursor with the default sprite
-1 Shows the mouse cursor without changing the sprite

A hardware sprite15 with the index of 0 is used to display the mouse cur-
sor. If the MOUSE statement is given a 1, it will set sprite 0’s pixel data
to VRAM address $13000 and copy the default mouse cursor data to
that location. If the MOUSE statement is given a -1, it will display the
sprite but change neither its pixel data address nor the data that resides
there. This behavior is useful for written a program that sets a custom

15See the chapter on Graphics

74

mouse cursor.

The size of the sprite will automatically be set based on the screen mode.
Changing the screen mode while the mouse is displayed will automati-
cally hide it.

Examples:

MOUSE 1 Show mouse cursor using default cursor

MOUSE -1 Show mouse cursor using existing sprite 0

MOUSE 0 Hide mouse cursor

The cursor sprite can also be changed by directly changing the VRAM
where it is read from. This a program that will change the mouse cursor
to be a miniature version of the default VERA palette:

10 MOUSE 1
20 FOR I=0 to 255
30 VPOKE 1,$3000+I,I
40 NEXT I

MOVSPR

The MOVSPR statement moves a sprite to a location on the screen. The
MOVSPR statement requires three integer arguments. The first argu-
ment is the sprite index, the second is the location along the x-axis,
and the third the location along the y-axis. The MOVSPR statement will
position the sprite’s most upper left pixel pixel at the given XY coordi-
nates, regardless of whether that pixel is visible or not. To use a hard-
ward sprite, see the documentation for the SPRITE and SPRMEM state-
ments.

Example:

10 REM FILL A SPRITE VRAM WITH PIXEL DATA

75

20 FOR I=0 to 255
30 VPOKE 1,$4000+I,I
40 NEXT I
50 SPRMEM 1,1,$4000,1
60 SPRITE 1,3,0,0,1,1
70 MOVSPR 1,100,100

The above code will create a sprite that’s a 16x16 pixel version of the de-
fault VERA palette, and then position it at coordinates (100,100).

NEXT

The NEXT statement is used as part of a for-loop in BASIC. Each use
of the FOR statement will need a corresponding NEXT statement, and
NEXT will never be used without FOR. When a program reaches the
NEXT statement, the program goes back to the correspondingFOR state-
ment and evaluates whether it needs to re-enter the loop or not.

A NEXT statement can take no arguments, or it can take many argu-
ments specified as a comma-separated listed. These arguments must
be loop counter variables that were created by by FOR loops. When
no arguments are supplied, the NEXT statement will return control to
the last FOR statement that was started. If loop counter arguments are
supplied, the NEXT statement will will evaluate the variables from left
to right, completing the first loop counter’s for-loop before jumping to
the next.

Examples:

FOR L=1 to 10:NEXT

FOR L=1 to 10:NEXT L

FOR L=1 to 10:FOR M=1 to 10:NEXT M,L

76

ON

The ON statement can be used to change the target line number of a
GOTO or GOSUB statement. The ON statement is followed by an ex-
pression that evaluates to a number, then followed by either a GOTO or
GOSUB statement, which is in turn followed by a comma-separated list
of line numbers. Which line is used as the target of the GOTO or GOSUB
statement depends on the result of the numerical expression16. For ex-
ample, if the expression 1 is given, then the GOTO or GOSUB would se-
lect the first line number in the comma-separated list. If the expression
1+2 is given, the third line number in the list would be selected. If the
expression evaluates to0 or any number higher than the number of line
numbers in the list, the program moves to the next line. If the expres-
sion evaluates to any number outside 0 to 255 an error occurs.

Example:

10 INPUT X
20 ON X GOTO 10,50,50,50
30 PRINT "NOPE!"
40 GOTO 10
50 PRINT "YUP!"
60 ON X GOTO 10,30,30

Try It Yourself!
Type in the above program and see if you can figure out what
number needs to be entered in order to exit the program!

OPEN

The OPEN statement can be used to access various devices from within
a BASIC program on the Commander X16. These devices may be the
keyboard, the screen (in text mode), disk drives, and printers. The first
argument to the OPEN statement is any number from 1 to 255 that will

16The ON statement works very similar to how switch or select works in other pro-
gramming languages

77

be used to refer to the OPENed device from other BASIC statements.
The second argument is a number that specifies which device to OPEN.
The default devices available on the Commander X16 are:

Device # Description Secondary Address
0 Keyboard (none)
1 (unused) (none)
2 (unused) (none)
3 Screen 0 or 1

4-5 Printer (or other IEC de-
vice)

0 = capital letters/graphic char-
acters; 1 = capital/lowercase let-
ters

6-30 IEC Bus devices (SD card
is 8 at boot, but can be
reassigned)

0 = read; 1 = write; 2-14 = data
channels; 15 channel for com-
mands

Many devices may require a third, or even a fourth argument to be passed
toOPEN. The Secondary Address column of the above table shows some
of the available values for the third argument on the various devices. For
disk drives, a fourth argument specifies the name of a file.

Examples:

OPEN 1,0 OPENs the keyboard as a device

OPEN 3,8,0,"MYFILE" OPENs a file on the SD card

OPEN 4,9,15 OPENs the data channel on a disk con-
figured as device 9

POKE

The POKE statement is used to write directly to the Commander X16’s
memory or a memory-mapped device. It is always followed by two
numbers or expressions that evaluate to numbers. The first is the ad-

78

dress in the memory map, which can be any value from 0-6553517. The
second argument is the value to write to the specified address. Because
the Commander X16 is an 8-bit computer, so each address only holds
one byte of data. Therefore, any value from 0-255 is allowed.

ThePOKE statement is very powerful, since it is able to write not only to
memory, but also the memory mapped hardware such as the VERA. To
learn about the regions of memory available and the memory mapped
hardware, see the Memory Map appendix.

Examples:

POKE 2048,64 Write 64 to address 2048

POKE $800,$40 Same as above, but denoted in hex-
adecimal

POKE 0,1 Writea 1 to address $0000, which
switches the Commander X16 to use
RAM bank 1

PRINT

The PRINT statement is used to display text and graphic characters to
the screen. When it text mode, it is the most typical way to display out-
put of a program to a user. The PRINT statement can be followed by
any of the following:

• Characters inside of quotation marks - Called literals because they
are printed literally as they are typed in

• Variables - PRINT’s’ the value the variable currently holds
• Functions - PRINT’s’ the value returned by the function
• Punctuation marks - Provides formatting options:

– Comma (,) - Advances to the next column, where each col-
umn is 10 characters wide

– Semicolon (;) - Does not advance to the next line after

17Since the Commander X16 supports hexadecimal values, it’s easier to think of this as
$0000-$FFFF

79

Because commas have a special meaning for formatting, commas should
not be used to separate PRINTing multiple literals, variables, or func-
tions when output with a single PRINT.
Examples:

PRINT "HELLO" PRINTs ”HELLO” to the screen

PRINT "HELLO, "A$ PRINTs ”HELLO, ” followed by the
value of A$

PRINT A+B PRINTs The result of A+B

PRINT J PRINTs the value of J

PRINT A,B,C,D PRINTs the values of each variable for-
matted into columns

PRINT#

The PRINT# statement works nearly identically to the PRINT state-
ment, except that it PRINTs to an open file or device instead of the
screen. The first argument to thePRINT# statement must be a number
used to identify the open file or device. This must be a number that was
used with an OPEN statement to open the file or device. This number is
followed by a comma, which is followed by the value to be printed. This
can be any of the options available to the PRINT statement, including
commas and semicolons used for formatting. Not every device that can
be written to with PRINT# will be able to handle formatting, however.

Example:

10 OPEN 1,8,1,"MYFILE"
20 FOR J=1 to 10
30 FOR I=1 to J
40 PRINT#1,"*",;
50 NEXT I
60 PRINT# 1,""
70 NEXT J

80

80 CLOSE 1

The above example will write a file named ”MYFILE” to the SD card, con-
taining a pattern of asterisks. To view the file, use the Command X16’s
built-in text editor:

EDIT "MYFILE"

The file should contain the following pattern:

*
**

PSET

The PSET statement sets the color of a single pixel in graphics mode
(set with SCREEN $80). The PSET statement is followed by the x and
y coordinates and number from 0-255 to specify the color from the
palette.

Example:

10 SCREEN$80
20 FOR Y=0 to 239
30 FOR X=0 to 319
40 C=INT(Y/15)*16+INT(X/15)
50 PSET X,Y,C
60 NEXT X,Y

The above program usesPSET to display the default VERA color palette

81

to the screen. Because it calculates and draws each pixel one at a time,
it takes a few minutes to complete. After all, it has 76,800 pixels to
calculate! See the RECT statement for a much faster way to display the
palette. It only has to calculate the color 256 times.

PSGCHORD

The PSGCHORD statement instructs the programmable sound genera-
tor to begin playing multiple notes at the same time. For arguments, the
PSGCHORD statement accepts a channel and a string. Because a chord
plays multiple notes at the same time, the channel argument specifies
the first channel to use for the chord, but other channels will be used
for subsequent notes. For example, if you specify a channel argument
of 3 for a chord which plays 4 notes, the PSGCHORD statement will play
the notes on channels 3, 4, 5, and 6. It is important to set each of the
channels to use the desired waveform with thePSGWAV statement. The
string argument is used to specify which notes the PSGCHORD state-
ment will play. For more information on specifying notes, see the chap-
ter on Sound.

Example:

REM PLAY A C MAJOR CHORD ON WITH A PULSE WAVEFORM
10 PSGWAV 0,63:PSGWAV 1,63:PSGWAV 2,63
20 PSGCHORD 0,"CGE"

PSGFREQ

ThePSGFREQ statement plays a note on the programmable sound gen-
erator at a given frequency. This is an alternative to playing a note with
PSGNOTE, where instead of specifying a musical note, a frequency in
Hertz is specified. Like PSGNOTE, PSGFREQ returns immediately and
does not wait for a note to finish playing. If a Hertz value of 0 is speci-
fied, the channel is immediately silenced.

Examples:

82

PSGFREQ 3,2600 Plays the waveform on channel 3 at 2,600hz.

PSGFREQ 0,440 Equivalent toPSGNOTE 0,$4Awhich plays A
above middle C on channel 0.

PSGFREQ 2,0 Silences channel 2.

PSGINIT

The PSGINIT statement initializes the VERA’s programmable sound
generator (PSG). When the PSGINIT statement is run, it initializes the
PSG, and does the following on all 16 channels:

• silences the channel
• sets the volume to 63 (the maximum)
• sets the waveform to pulse with a duty cycle of 50%

PSGNOTE

ThePSGNOTE statement plays a single note on the programmable sound
generator. The first argument is the channel, and the second argument
specifies which note. The note argument can be any number, but is in-
tended to be specified with hexadecimal notation. This is so that the
most significant 4 bits (often called the ”high nybble”) represent the oc-
tave while the least significant 4 bits (the ”low nybble”) represent the
musical note. The lowest note of any octave is C, which is represented
with a 1, and the highest note of any octave is B, which is represented
with a C. A note of 0 on any octave will release the note playing on that
channel, and the note values D, E, and F have no effect.

Although this may seem confusing, it is actually convenient for most
uses. For example to play a ”middle C” the note value $41 would be
used. The $ tells BASIC that the value is hexadecimal, the 4 indicates
the note is in the 4th octave, and 1 specifies the note ”C”. Here’s a table
of which nybble produces which note:

83

Nybble $x0 $x1 $x2 $x3 $x4 $x5 $x6
Note Release C C♯/D♭ D D♯/Eb E F

Nybble $x7 $x8 $x9 $xA $xB $xC $xD-$xF
Note F♯/G♭ G G♯/A♭ A A♯/B♭ B no-op

Negative numbers can also be used to specify notes. These will be
treated as the same note as the positive value.

Example:

10 PSGWAV 1,63 : REM PULSE WITH 50% DUTY CYCLE
20 PSGNOTE 1,$4A : REM PLAYS CONCERT A
30 SLEEP 50 : NEXT X : REM DELAYS FOR A BIT
40 PSGNOTE 1,0 : REM RELEASES THE NOTE
50 SLEEP 10 : NEXT X : REM DELAYS FOR A BIT
60 PSGNOTE 1,$3A : REM PLAYS A IN THE 3RD OCTAVE
70 SLEEP 25 : NEXT X : REM SHORT DELAY
80 PSGNOTE 1,-$3B : REM A# WITHOUT RETRIGGERING
90 SLEEP 25 : NEXT X : REM SHORT DELAY
100 PSGNOTE 1,0 : REM RELEASES THE NOTE

PSGPAN

The PSGPAN statement is used to control the stereo output of a PSG
channel. It takes an argument for the channel, and an argument for
which speaker the channel should play from. The second argument val-
ues are as follows:

Left 1
Right 2
Both 3

Examples:

84

PSGPAN 0,3 Set channel 0 to play from both speakers.

PSGPAN 3,1 Set channel 3 to play from only the left
speaker.

PSGPAN 7,2 Set channel 7 to play from only the right
speaker.

PSGPLAY

The PSGPLAY statement plays a musical melody on a single channel.
PSGPLAY takes two arguments; a channel and a string of characters
that tells the programmable sound generator what to play. This second
argument is specified in a custom macro language18, and includes notes,
releases, tempos, octaves, rests, and other musical elements. For exam-
ple, the following statement will play a major scale in the key of C:

PSGPLAY 0,"CDEFGAB>C"

The PSGPLAY statement uses the exact same macro language as the
FMPLAY statement, so see the section on FMPLAY for more informa-
tion.

PSGVOL

The PSGVOL statement sets a channel’s volume. The first argument
is the channel, and the second argument is a value from 0 through
63. The volume is maintained for the channel, even if the waveform is
switched. Only another PSGVOL statement or an PSGINIT statement
will cause the volume of a channel to change.

Examples:

18for a complete guide, see the Macro Language for Music appendix

85

PSGVOL 0,63 Set channel 0 to full volume.

PSGVOL 1,31 Set channel 1 to half volume.

PSGVOL 2,0 Set channel 2 to no volume, silencing it.

PSGWAV

The PSGWAV statement sets the waveform of a channel on the pro-
grammable sound generator (PSG), which results in a different timbre.
The first argument is the channel, and the second argument indicates
which wavform to use. There are four wavforms to choose from: pulse
(square wave), sawtooth, triangle, and noise. If using the pulse wave-
form, the duty cycle19 of the wavform can also be specified. Here are
the values to use with the second argument for each waveform:

0-63 Pulse Duty cycle = (VAL+1)/128
64-127 Sawtooth All values have identical effect
128-191 Triangle All values have identical effect
192-255 Noise All values have identical effect

Examples:

PSGWAV 0,63 Set channel 0 to Pulse with a 50% duty cycle.

PSGWAV 0,31 Set channel 0 to Pulse with a 25% duty cycle.

PSGWAV 1,64 Set channel 1 to Sawtooth.

PSGWAV 2,128 Set channel 2 to Triangle.

PSGWAV 3,192 Set channel 3 to Noise.

19The ”duty cycle” of a square wave is the percentage of the time that the wave is ”high”
compared to the total period of the wave

86

READ

The READ statement is used to get information that has been coded
into the program using DATA statements. Like the INPUT statement,
the READ statement is followed by a variable that matches the type of
data being read. The first time a READ statement is encountered in a
program, the first piece of data specified by a DATA statement is read
into the variable. The next time, a READ statement is encountered, it
READs the next piece of data specified by a DATA statement, and so
on. If the type of the data and the type of the variable do not match, a
TYPE MISMATCH ERROR will occur.

10 READ A$
30 READ B
40 READ C%
50 PRINT A$,B,C%
60 DATA "A VALUE"
70 DATA 27.5,42

RECT

TheRECT statement draws a filled rectangle in graphics mode in a given
color. The first two arguments are the x and y coordinates for the upper
left corner of the rectangle. The third and fourth arguments are the x
and y coordinates for the lower right corder of the rectangle. The fifth
argument is a number from 0-255 that specifies the color from the cur-
rent palette.

Example:

10 SCREEN $80
20 FOR Y=0 TO 15
30 FOR X=0 TO 15
40 C=Y*16+X
50 X1=X*20
60 Y1=Y*15
70 RECT X1,Y1,X1+19,Y1+14,C
80 NEXT X,Y

87

The above program displays the default VERA color palette to the graph-
ics screen by drawing a 20x15 rectangle for each color.

The RECT statement is similar to the FRAME statement, except that
RECT fills the rectangle with the specified color.

REM

The REM statement is used to leave a REMark (also called a comment)
in a BASIC program to help a programmer annotate sections of the pro-
gram. It could help explain how a complex section of logic works, tell
which variable is being used for, or even to let the programmer sign their
name! A REM statement can be followed by anything at all, and the BA-
SIC program will ignore it.

No program needs REM statements to function correctly, but they can
make a huge difference when it comes to reading and modifying a BA-
SIC program. Most programmers will use REM statements on any pro-
gram once it has become large or complex. It’s a good idea to get into
the habit of leaving comments in your program to help understand how
it works.

Example:

10 REM START OF PROGRAM
20 PRINT "ENTER A NUMBER";
30 INPUT A: REM STORE NUMBER IN A
40 PRINT "ENTER ANOTHER NUMBER";
50 INPUT B: REM STORE NUMBER IN B
60 C=A*B: REM MULTIPLY NUMBERS
70 PRINT C

RESTORE

The RESTORE statement resets where the READ statement will read
from, causing the next READ to read from the first DATA statement
again. In this way, a program can re-read data that it has already read.
The RESTORE statement takes no arguments, and always directs the
next READ back to the first DATA statement.

88

Example:

10 READ A$
20 PRINT A$
30 READ A$
40 PRINT A$
50 RESTORE
60 READ A$
70 PRINT A$
80 DATA "FIRST","SECOND"

Despite the above programREADing three times yet only having enough
data for two reads, it runs without error because RESTORE causes the
first piece of data to be read twice.

RETURN

The RETURN statement is always used in conjunction with the GOSUB
statement. When a program encounters a RETURN statement, the pro-
gram immediately jumps to the statement after the last executedGOSUB
statement. During execution, BASIC keeps track of which GOSUB state-
ment has been called in which order. When a RETURN is executed, the
corresponding GOSUB is removed from the list BASIC keeps track of.
Because of this list (often called a call stack) that BASIC keeps track of,
programmers are able to nest GOSUB statements, so that one subrou-
tine calls another subroutine and so on. If the program ever encounters
a RETURN statement when its list of GOSUBs is empty, it will cause a
RETURN WITHOUT GOSUB ERROR.

Example:

10 PRINT "FIRST"
20 GOSUB 50
30 PRINT "FOURTH"
40 END
50 GOSUB 80
60 PRINT "THIRD"

89

70 RETURN
80 PRINT "SECOND"
90 RETURN

SCREEN

The SCREEN statement is used to select a screen mode. The screen
mode determines how many characters can fit on the screen (both hor-
izontally and vertically), whether the screen has a border, and whether
bitmap graphics can be rendered in the layer behind the text. TheSCREEN
statement requires a numeric argument to tell it which screen mode to
use.

The available screen modes are:

Decimal Hexadecimal Screen Mode
0 $00 80x60 Text
1 $01 80x30 Text
2 $02 40x60 Text
3 $03 40x30 Text
4 $04 40x15 Text
5 $05 20x30 Text
6 $06 20x15 Text
7 $07 22x23 Text /w border
8 $08 64x50 Text /w border
9 $09 64x25 Text /w border
10 $0A 32x50 Text /w border
11 $0B 32x25 Text /w border
128 $80 256 color Bitmap Graphics

/w 40x30 Text

In addition to the above table, the value -1 can be passed to SCREEN
to toggle between modes 0 and 3.

90

NOTE:

Other screen configurations can be used by directly setting
registers in the VERA graphics module. For more details, see
the chapter on Graphics.

SLEEP

The SLEEP statement pauses program execution for a specified time
period. TheSLEEP statement takes a single argument which is the num-
ber of VSYNC interrupts to wait before continuing program execution.
These interrupts occur approximately 60 times per second, so to have
a program wait for one second, an argument of 60would be used. This
unit of measurement is often called a jiffy. The SLEEP statement will
wait for the specified number of jiffies, starting after the next VSYNC in-
terrupt to occur. Using SLEEP with no arguments is the same as using
0 for the number of jiffies, and will cause the program to wait until the
next VSYNC interrupt. This can be useful for animating graphics, since
a VSYNC interrupt is how you know that the VERA graphics module is
about to start drawing the next frame to the screen.

Examples:

SLEEP 60 Wait for about one second.

SLEEP 600 Wait for about ten seconds.

SLEEP 0 Wait until the next frame.

SPRITE

The SPRITE statement enables or disables one of the VERA’s 128 hard-
ware sprites, and allows you to set other sprite properties as well. The
SPRITE statement can cause a hardware sprite to display, but it cannot
tell the sprite what to look like. For that reason, the SPRITE statement
is intended to be used alongside theSPRMEM statement to point a hard-

91

ware sprite to a VRAM location, and some way to load data into VRAM
(such as the VLOAD or BVLOAD statements).

However, there is still an easy way to test the SPRITE statement with-
out loading anything into VRAM. This can be done by using the MOUSE
statement, which will initialize hardware sprite 0 to point to VRAM data
initialized to a mouse cursor:

10 MOUSE 1 : REM TURN ON MOUSE
20 MOUSE 0 : REM TURN OFF MOUSE
30 SPRITE 0,3 : REM DISPLAY SPRITE 0

The above code will cause the mouse cursor to display, even when the
mouse is not active. The cursor will not be able to be moved. This works
by enabling the mouse and initializing sprite 0 with the MOUSE 1 state-
ment, disabling the mouse and sprite 0 with MOUSE 0, and then re-
displaying sprite 0 (without enabling the mouse) with SPRITE 0,3.

The first argument to theMOUSE statement is the hardware sprite index.
With 128 hardware sprites, this number can be from 0 to 127. The sec-
ond argument sets the layer the sprite renders to, including disabling
the sprite completely with 0. The third argument is the palette offset
used in 4 bits-per-pixel mode. The fourth argument sets how the sprite
is flipped. The fifth argument is used to set width of the sprite, and the
sixth sets the height. Finally, the seventh argument sets the color mode.
Only the first two arguments are required. With this in mind, the sprite
from the above program can be modified. For example, it can be easily
flipped upside down:

SPRITE 0,3,0,2

Here is a brief summary of each argument:

92

Argument Description
Index The index of the hardware sprite (0-127)

Priority 0 - disable sprite, 1 - draw beneath both VERA lay-
ers, 2 - draw in between VERA layers, 3 - draw on
top of both VERA layers

Palette Offset 0-15 in 4bbp mode, not used in 8bpp mode
Flip 0 - no flip, 1 - flipped on the x-axis, 2 - flipped on

the y-axis, 3 - flipped on both x and y axis
Width 0 - 8 pixels, 1 - 16 pixels, 2 - 32 pixels, 3 - 64 pixels
Height 0 - 8 pixels, 1 - 16 pixels, 2 - 32 pixels, 3 - 64 pixels

Color Mode 0 - 4bpp, 1 - 8bpp

SPRMEM

The SPRMEM statement sets the VRAM address and the color mode of
a given sprite. The first argument is the sprite index. The VRAM address
is specified in two parts: the bank, and the address within the bank. The
VERA’s 128KB of video memory (or VRAM) can be thought of as two
banks of 64KB. The bank value can either be a 0 to indicate the first
64KB, or a 1 to indicate the second 64KB. The address within the bank
can then be specified with a 16 bit integer value. It is easiest to specify
address values using hexadecimal, so an address within a bank can be
any value from $0000 through $FFFF.

The final argument is the color mode. The VERA only allows sprites to
use the four bits per pixel mode (4bpp) or the eight bits per pixel mode
(8bpp). A value of 0 specifies 4bpp mode, and a value of 1 specifies
8bpp.

Example:

10 SCREEN $80 20 BVLOAD "MYSPRITE.BIN",8,1,$3000
30 SPRMEM 1,1,$3000,1
40 SPRITE 1,3,0,0,3,3
50 MOVSPR 1,160,120

The above program will load a sprite into VRAM bank 1 at address $3000
(sometimes specified as address $13000), set sprite 1 to use that ad-
dress, and interpret the data there in 8bpp mode. The SPRITE state-

93

ment is then use to set the rest of the sprite’s attributes, and theMOVESPR
statement moves the sprite’s location on the screen.

STEP

The STEP statement is used with the FOR, TO, andNEXT statements
in order to construct for-loops. The STEP statement is followed by a
number that will be added to the loop counter variable each time the
NEXT statement is executed. This number can be positive or negative.
Both integer and floating point numbers are allowed. When no STEP
statement is used in a for-loop, a default value of 1 is used.

Examples:

FOR I=1 TO 10 STEP 1 Count from 1 to 10.

FOR I=1 TO 10 Count from 1 to 10 (use default STEP).

FOR I=2 TO 10 STEP 2 Count to 10 by 2.

FOR I=10 TO 1 STEP -1 Count backwards from 10.

FOR I=0 TO 10 STEP 0.5 Count by 0.5.

STOP

TheSTOP statement will halt a program. This can be used to help debug
programs by causing them to stop at a certain point, and thenPRINTing
the values of variables. A STOPped program can be continued by using
the CONT command, which will start running the program from the line
after the STOP statement.

When the STOP statement executes, it will not only stop the program,
but will also print a message, BREAK IN xxxxwhere xxxx is the line
number containing the STOP statement. This is useful when multiple
STOP statements are used in a single program.

Example:

94

10 PRINT "HELLO"
20 STOP
30 PRINT "WORLD"

Try CONTinuing the above program after the STOP statement halts the
program.

SYS
The SYS statement transfers control of the X16 to a machine language
program in memory.

Example:

SYS 8192

In the above example, the X16 will execute a machine language program
stored at address 8192 in decimal. Because the Commander X16 also
supports hexadecimal arguments to BASIC statements, the same can
be written as:

SYS $2000

THEN
The THEN statement is used with an IF statement to tell the program
what to do when the condition of the IF statement is TRUE. A THEN
statement can either be followed by a line number a BASIC expression
such as a variable assignment or another statement. If the THEN state-
ment is followed by a line number, the THEN statement will behave the
same as a GOTO statement and jump program control to the specified
line number. When THEN is followed by a BASIC expression it will ex-
ecute that expression and then proceed to the next line of the program.

Examples:

10 A = 5

95

20 B = 1
30 IF A = 5 THEN B = 2
40 PRINT B

The above program should print 2 to the screen instead of 1. Here is
a way to accomplish the same thing by using a line number with THEN
instead of an expression.

10 A = 5
20 B = 1
30 IF A <> 5 THEN 50
40 B = 2
50 PRINT B

TILE

The TILE statement can be used to place a given tile on the VERA’s
layer 1 tile map. This works even when the map base or map size has
been changed, which makes it simple to place tiles in graphics modes.
Because a text layer on the VERA is just a tile map that uses tile char-
acters, the TILE statement can be used instead of using LOCATE and
PRINT to place a single character anywhere on the screen. The first two
arguments to theTILE statement are the 0-based X and Y coordinates,
and the third argument is the tile number.

Example:

10 I=0
20 FOR Y=0 TO 15
30 FOR X=0 TO 15
40 TILE X,Y,I
50 I=I+1
60 NEXT:NEXT
70 LOCATE 17 :REM MOVE READY PROMPT DOWN

The above example uses the TILE statement to display all the charac-
ters (the default tile set) on a 16 by 16 grid.

96

TO

TheTO statement is used with theFOR statement, theNEXT statement,
and sometimes the STEP statement to create a for-loop. The TO state-
ment is used to define the range of a for-loop. The number preceeding
the TO statement will be the value of the loop variable on the first pass
through the loop, and the loop will stop when the loop variable is greater
than or equal to the number that follows the TO statement.

See the FOR statement for examples of using the TO statement.

VPOKE

The VPOKE statement sets a single byte of video RAM (VRAM) on the
VERA’s onboard memory. This allows for directly setting the data that
will be interpretted as graphics and PSG sound. The VERA has a total of
131,072 bytes (128 kilobytes) of VRAM, which it exposes as 2 banks of
65,536 bytes (64 kilobytes) each. The VPOKE statement takes three ar-
guments: the bank, the memory location within the bank, and the value
to be stored.

Example:

10 FOR I=1 to 256*64 STEP 2
20 VPOKE 1,$B000+I,0 :REM SET COLOR
30 NEXT I

The above BASIC code will fill the screen with black spaces one charac-
ter at a time by writing directly to the area of the VERA’s VRAM where
the X16 stores the text mode screen data. The VPOKE sets the back-
ground and forground color to black, although the character data does
not change.

NOTE:

In screen mode 0, the tile map is stored in the VERA at VRAM
address $1B000, and is 128 tiles wide by 64 tiles tall.

97

VLOAD

The VLOAD statement loads a file with a two-byte header directly into
the VERA’s VRAM, but without loading the header. For arguments, the
VLOAD statement takes the file’s name, the device number where the
file is stored, the bank of VRAM on the VERA (either 0 or 1), and the
address within the bank in which to load.

Examples:

VLOAD "MYFILE.BIN",8,0,$4000 Loads a file named ”MY-
FILE.BIN” from device 8
into VRAM at address
$04000.

VLOAD "MYFONT.BIN",8,1,$F000 Loads a file named ”MY-
FONT.BIN” from device
8 into VRAM at address
$1F000.

To load a file that does not have a two-byte header, see the BVLOAD
statement.

WAIT

The WAIT statement is used to halt a program until the contents of a
memory location changes in a specified way. The WAIT statement re-
quires an memory address as the first argument, and a value for the sec-
ond. When the value in the memory address is ANDed with the second
argument and results in a zero, the WAIT statement continues to halt
the program while it keeps re-checking the memory address. When the
result is non-zero, the program continues. An optional third argument
can be supplied that will be logically XORed to the value in memory be-
fore being ANDed by the second argument.

The WAIT statement is not very useful for most BASIC programs, and is
typically only used when interfacing with hardware via memory mapped
addresses.

98

Example:

(When executing this program, continue to hold RETURN after typing
RUN)

10 BANK 0
20 PRINT "LET GO OF RETURN KEY"
30 WAIT $A820,16
40 PRINT "PRESS RETURN KEY"
50 WAIT $A820,16,16
60 GOTO 20

The above example works by reading the memory location of the X16’s
”joystick 0”, which is a virtual joystick emulated with the keyboard”. The

first WAIT is used to detect that RETURN is no longer pressed (which
it would be after executing the RUN command), and the second detects
that it has been pressed again20.

Functions

Functions are instructions that return values that can be used like vari-
ables, or even assigned to variables. Functions are often called in-line
to supply arguments to statements. Functions will either return a nu-
meric value or a string value. If the function returns a string value, its
name will end with a $.

Because the return value is a fundamental property of a function, many
of the examples in this section include the output of the example listed
directly below the example, itself.

ABS

The ABS(X) function will return the absolute value of X.

20The use of WAIT here is just for an example. The JOY function would be a much
better choice for this functionality

99

Example:

PRINT ABS(-10)
10

ASC

The ASC function will return an integer value representing the PETSCII
code21 for the first character of string. If string is the empty string, ASC
returns 0. The opposite of this function is the CHR$ function.

Example:

PRINT ASC("A")
65

ATN

The ATN(X) (arctangent) function will return the angle whose tangent
is X. This is the inverse of the TAN function.

Example:

PRINT ATN(0)
0

In the above example, the value 0 will be printed on the screen.

BIN$

The BIN$ function returns a string of the binary representation (1’s and
0’s) of a number. The BIN$ function will only work on numbers greater
than or equal to 0, and less than 65,536. When a floating point number
number is passed to BIN$, it will ignore the decimal part of the num-
ber and truncate the value to an integer, just as the INT function does.
When BIN$ is passed a number that is less than 256, it only returns 8

21See the PETSCII Codes table in the appendix

100

characters since the value can be represented by 8 bits. When a num-
ber that is 256 or greater is used, it will return 16 characters.

Examples:

PRINT BIN$(3)
00000011

PRINT BIN$(3.14)
00000011

PRINT BIN$(3000)
0000101110111000

CHR$

TheCHR$ function takes a number from 0-255 and returns the PETSCII
character represted by that PETSCII code22. Floating point numbers
will be truncated to integers, as is done when the INT function is used.
Numbers outside that range will cause an error. The opposite of this
function is the ASC function.

Examples:

PRINT CHR$(65)
A

PRINT CHR$(65.7)
A

PRINT CHR$(147) : REM CLEARS SCREEN

COS

The COS(X) (cosine) function will return the cosine of an angle X, mea-
sured in radians.

22See the PETSCII Codes table in the appendix

101

Example:

PRINT COS(π)
-1

EXP
TheEXP(X) (exponent) function will return the value of the mathemat-
ical constant e (2.71828183) raised to the power of X.

Examples:

PRINT EXP(5)
148.413159

REM PRINT E, ITSELF
PRINT EXP(1)
2.71828183

FNXX(X)
Any function FNXX (where XX is any legal name) that has been defined
with the DEF statement can be called inside or outside of a BASIC pro-
gram. It will execute the user-defined function and return the result.

See the DEF statement for details and examples.

FRE
The FRE function returns the number of unused (or free) BASIC bytes.
Although the FRE function requires an argument (any valid numeric or
string will do), this argument has no effect on the function’s result.

Example:

10 PRINT FRE(0)
20 DIM A(4096) :REM ALLOCATE SOME MEMORY

102

30 PRINT FRE(0)

The above program will print the amount of free memory available to
BASIC, allocate some of that memory, and then again print the updated
amount of free memory.

HEX$

The HEX$ function takes a numeric value and returns a string of the
hexadecimal representation of that value. Hexadecimal is a base-16
number system, meaning that 16 different numeric values can be rep-
resented by a single character. Just like with the usual base-10 number
system, or decimal, when the next highest value is needed you simply
use more than one character to represent it. For example, in decimal
when the value 10 needs to be written, two characters are used: ”1” fol-
lowed by ”0”.

In order to have 16 different characters to represent numeric values, al-
phabetic characters are used for values 10 through 15. Here are the char-
acters used in hexadecimal, and their decimal equivalents:

H 0 1 2 3 4 5 6 7 8 9 A B C D E F
D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

So in order to write the value 16 in hexadecimal, two characters would
need to be used: ”1” followed by ”0” (just like 10 in decimal).

TheHEX$ function can accept any numeric value from 0-65535. When
values less than 256 are given, HEX$ always returns exactly two charac-
ters, and when values greater than or equal to 256 are given, it always
returns 4 characters. Both are padded with 0’s if necessary.

Example:

10 FOR I=0 to 50
20 PRINT I,HEX$(I)
30 NEXT I

103

The above program will print out a table showing values in decimal fol-
lowed by the same value in hexadecimal.

INT

The INT function returns a truncated23 integer version of the numeric
argument passed to the function. The result will always be less than or
equal to the argument, including when the argument is negative.

Examples:

PRINT INT(3.8)
3

PRINT INT(-3.8)
-4

The INT function can also be used to round decimal numbers to a cer-
tain precision, such as to the nearest hundredth:

X=INT(X*100+0.5)/100

LEFT$

The LEFT$ function takes a string and number and returns a substring
containing the specified number of leftmost characters.

Example:

PRINT LEFT$("BASEBALL", 4)
BASE

23Truncated means removing all decimal places to the right of the decimal point, leaving
only an integer

104

LEN
The LEN function returns the length of a string. Because a string in BA-
SIC can never exceed a length of 255 characters, the LEN function will
always return values between 0-255.

Example:

PRINT LEN("COMMANDER X16")
13

LOG
The LOG function will return the natural log of the given numeric value.
The natural log is the log to the base of e (see EXP). To convert to log
base 10, simply divide by LOG(10). To convert to log base 2, divide by
LOG(2).

Examples:

REM NATURAL LOG OF 8
PRINT LOG(8)
2.07944154

REM LOG BASE 10 OF 8
PRINT LOG(8)/LOG(10)
.903089987

REM LOG BASE 2 OF 8
PRINT LOG(8)/LOG(2)
3

MID$
The MID$ function takes a string, a start position, and an optional num-
ber of characters, and returns a substring of the original string. The sub-
string begins with the character specified by the start position, and will
be as long as is specified by the number of characters. If the number of
characters is not specified, the substring will contain all characters up to

105

the end of the original string.

Examples:

PRINT MID$("COMMANDER X16",4,3)
MAN

PRINT MID$("COMMANDER X16",1,3)
COM

PRINT MID$("COMMANDER X16",7,5)
DER X

PRINT MID$("COMMANDER X16",11)
X16

PEEK

The PEEK function returns the contents of the Commander X16’s mem-
ory at a given address. This includes reading the values from any of the
X16’s memory mapped hardware devices (if they are readable) such as
the VERA or the FM synthesizer chip. The address must be in the range
of 0-65535, and the values returned will all be in the range of 0-255.

Example:

10 FOR A=0 TO 255
20 PRINT HEX$(A)+": $";
30 PRINT HEX$(PEEK(A)),;
40 NEXT A

The above example will print the entire contents of the zero page24.

24The ”zero page” is the first 256 bytes of the Commander X16’s memory. This memory
has special purposes on the 65C02 processor.

106

π

Theπ constant returns the value of pi and can be used just like any other
floating point variable or literal.

10 INPUT "WHAT IS THE RADIUS OF THE CIRLCE";R
20 PRINT "CIRCUMFRANCE:",2*R*π
30 PRINT "AREA:",,R*R*π

POINTER

The POINTER function returns the memory address of the data struc-
ture where a BASIC variable is stored.

10 X$ = "COMMANDER X16"
20 PRINT HEX$(POINTER(X$))

POS

The POS function returns the current column of the text cursor. The
POS function takes a single argument that is unused. Due to the way
BASIC reads data from a program, the fastest type of variable to use
is the special constant π (pi). Therefore, it is a common convention to
always call the POS function as POS(π).

10 PRINT POS(π)
20 REM ADVANCE THE COLUMN BUT NOT THE LINE
30 PRINT "COMMANDER X16";
40 PRINT POS(π)

RIGHT$

TheRIGHT$ function takes a string and number and returns a substring
containing the specified number of rightmost characters.

Example:

PRINT RIGHT$("BASEBALL", 4)

107

BALL

RND

The RND function generates pseudo-random floating-point numbers
in the range of 0 to 1 (exclusive), such as 0.153632167, 0.567453436,
0.942242351.

At power-on of the X16 computer a sequence of random numbers is
generated automatically and stored. The number passed in parenthesis
to the RND function influences the resulting values in subsequent calls
to RND. A negative number (-1) will reseed the sequence starting point
of original random generated numbers. The same negative number will
result in the same sequence of random numbers. A positive number (1)
will return the next random number of the current sequence. Using a
zero (0) will generate a shorter sequence of random numbers, which
can provide a speed improvement in returning the result (if processing
times are important).

A best practice method is to initially seed the RND function with -TI, at
the beginning of your program. The TI system variable, which stands
for Time-Interval, is the elapsed time since your computer last turned
on. Generally, this provides a different random sequence every time
you re-run the program. When you need a random number later in your
program you can then use RND(1) to provide the next random number.

Using a formula including theRND(1) function, can get a random value
between any two numbers. Using variables to explain this formula, LO
= 10 andHI = 40, the formula could beN = RND(1)*(HI-LO)+LO.
This will result in random numbers between 10 and (less than) 40. When
repeated, you might see numbers like 13.3567377, 24.5913944, 16.2857004,
and 39.2262697.

X = INT(RND(1)*6)+1 Simulate a 6-side dice roll
X = INT(RND(1)*1000)+1 Number from 1-1000
X = INT(RND(1)*150)+100 Number from 100-249

108

RPT$

<TODO>

SGN

<TODO>

SIN

The SIN(X) (sine) function will return the sine of an angle X, measured
in radians.

Example:

PRINT SIN(π/2)
1

SPC

<TODO>

SQR

<TODO>

STR$

<TODO>

STRPTR

<TODO>

TAB

<TODO>

TAN

The TAN(X) (tangent) function will return the tangent of an angle X,
measured in radians.

109

Example:

PRINT TAN(0)
0

TATTR

<TODO>

TDATA

<TODO>

USR

<TODO>

VAL

TheVAL function returns a numeric value representing the characters in
a string argument. Often a string variable is passed to the function, but
a literal string is also valid (eg. ” -540.15 ”). Blank characters (”spaces”)
in the string are ignored. If the first non-blank character of the string is
not a plus sign (+), minus sign (-), dollar sign ($), percentage sign (%) or
a digit the conversion ends with a value of zero (0). These initial special
characters signify the type of number to follow - Positive (+); Negative
(-); Hexadecimal ($), which then validates the letters A,B,C,D,E & F; Bi-
nary Literal (%) eg. ”010101”; and Numbers (0123456789). Subsequent
valid characters are additional digits (or the first decimal point or E/e for
Exponent). The function ends at the end of the string, or the next non-
digit character for that numberic type and returns the converted result.
Subsequent digits after any non-valid characters are disregarded. Other
mathematical terms and arithmetic operations are ignored.

The valid range of possible numbers is from -1e+38 to 1e+38. Outside of
this range the error ”?OVERFLOW ERROR IN <line>” is shown and the
program stops. When the argument isn’t a string, the error ”?TYPE MIS-
MATCH ERROR IN <line>” would result and stop the program. When the
argument is absent, the error ”?SYNTAX ERROR IN <line>” is returned
and stops the program.

110

Examples:

10 READ A$
20 DATA " - 120 . 64 "
30 PRINT VAL(A$)
RUN
-120.64

Leading letters are invalid, but don’t cause an error.

PRINT VAL("ABC 123")
0

The binary literal string is converted to decimal number.

PRINT VAL("%010101")
21

The exponential notation string is returned as a simplified number.

PRINT VAL("+352 .25 E-3 Units")
0.35225

VPEEK
<TODO>

111

BASIC Statements Table

Keyword Type Summary Origin

ABS function
Returns absolute value
of a number

C64

AND operator
Returns boolean ”AND”
or bitwise intersection

C64

ASC function
Returns numeric
PETSCII value from
string

C64

ATN function
Returns arctangent of a
number

C64

BANK statement
Sets the bank used to in-
terpret addresses above
$A000

X16

BIN$ function
Converts numeric to a bi-
nary string

X16

BINPUT# command
Reads a fixed-length
block of data from an
open file

X16

BLOAD command
Loads a headerless bi-
nary file from disk to a
memory address

X16

BOOT command
Loads and runs
AUTOBOOT.X16

X16

BVERIFY command
Verifies that a file on disk
matches RAM contents

X16

BVLOAD command
Loads a headerless bi-
nary file from disk to
VRAM

X16

CHAR command
Draws a text string in
graphics mode

X16

CHR$$ function
Returns PETSCII charac-
ter from numeric value

C64

112

CLOSE command
Closes a logical file num-
ber

C64

CLR command
Clears BASIC variable
state

C64

CLS command Clears the screen X16

CMD command
Redirects output to non-
screen device

C64

COLOR command Sets text fg and bg color X16

CONT command
Resumes execution of a
BASIC program

C64

COS function
Returns cosine of an an-
gle in radians

C64

DA$ variable
Returns the date in
YYYYMMDD format
from the system clock

X16

DATA command
Declares one or more
constants

C64

DEF command
Defines a function for
use later in BASIC

C64

DIM command
Allocates storage for an
array

C64

DOS command
Disk and SD card direc-
tory operations

X16

END command
Terminate program ex-
ecution and return to
READY.

C64

EXP function
Returns the inverse natu-
ral log of a number

C64

FMCHORD command
Start or stop simultane-
ous notes on YM2151

X16

FMDRUM command
Plays a drum sound on
YM2151

X16

FMFREQ command
Plays a frequency in Hz
on YM2151

X16

FMINIT command
Stops sound and reini-
tializes YM2151

X16

113

FMNOTE command
Plays a musical note on
YM2151

X16

FMPAN command
Sets stereo panning on
YM2151

X16

FMPLAY command
Plays a series of notes on
YM2151

X16

FMPOKE command
Writes a value into a
YM2151 register

X16

FMVIB command
Controls vibrato and
tremolo on YM2151

X16

FMVOL command
Sets channel volume on
YM2151

X16

FN function
Calls a previously de-
fined function

C64

FOR command
Declares the start of a
loop construct

C64

FRAME command
Draws an unfilled rectan-
gle in graphics mode

X16

FRE function
Returns the number of
unused BASIC bytes free

C64

GET command
Polls the keyboard cache
for a single keystroke

C64

GET# command
Polls an open logical file
for a single character

C64

GOSUB command
Jumps to a BASIC sub-
routine

C64

GOTO command
Branches immediately
to a line number

C64

HELP command
Displays a brief sum-
mary of online help
resources

X16

HEX$ function
Converts numeric to a
hexadecimal string

X16

IF command
Tests a boolean condi-
tion and branches on re-
sult

C64

114

INPUT command
Reads a line or values
from the keyboard

C64

INPUT# command
Reads lines or values
from a logical file

C64

INT function
Discards the fractional
part of a number

C64

JOY function
Reads gamepad button
state

X16

KEYMAP command
Changes the keyboard
layout

X16

LEFT$ function
Returns a substring start-
ing from the beginning
of a string

C64

LEN function
Returns the length of a
string

C64

LET command
Explicitly declares a vari-
able

C64

LINE command
Draws a line in graphics
mode

X16

LINPUT command
Reads a line from the
keyboard

X16

LINPUT# command
Reads a line or other
delimited data from an
open file

X16

LIST command
Outputs the program
listing to the screen

C64

LOAD command
Loads a program from
disk into memory

C64

LOCATE command
Moves the text cursor to
new location

X16

LOG function
Returns the natural loga-
rithm of a number

C64

MENU command
Presents the user with
a menu of built-in pro-
grams

X16

MID$ function
Returns a substring from
the middle of a string

C64

115

MON command
Enters the machine lan-
guage monitor

X16

MOUSE command
Hides or shows mouse
pointer

X16

MOVSPR command
Set the X/Y position of a
sprite

X16

MX/MY/MB variable
Reads the mouse posi-
tion and button state

X16

NEW command
Resets the state of BA-
SIC and clears program
memory

C64

NEXT command
Declares the end of a
loop construct

C64

NOT operator
Bitwise or boolean in-
verse

C64

OLD command
Undoes a NEW com-
mand or warm reset

X16

ON command
A GOTO/GOSUB table
based on a variable value

C64

OPEN command
Opens a logical file to
disk or other device

C64

OR operator Bitwise or boolean ”OR” C64

PEEK function
Returns a value from a
memory address

C64

π function
Returns the constant for
the value of pi

C64

POINTER function
Returns the address of a
BASIC variable

C128

POKE command
Assigns a value to a
memory address

C64

POS function
Returns the column posi-
tion of the text cursor

C64

POWEROFF command
Returns the address of a
BASIC variable

X16

PRINT command
Prints data to the screen
or other output

C64

116

PRINT# command
Prints data to an open
logical file

C64

PSET command
Changes a pixel’s color in
graphics mode

X16

PSGCHORD command
Starts or stops simulta-
neous notes on VERA
PSG

X16

PSGFREQ command
Plays a frequency in Hz
on VERA PSG

X16

PSGINIT command
Stops sound and reini-
tializes VERA PSG

X16

PSGNOTE command
Plays a musical note on
VERA PSG

X16

PSGPAN command
Sets stereo panning on
VERA PSG

X16

PSGPLAY command
Plays a series of notes on
VERA PSG

X16

PSGVOL command
Sets voice volume on
VERA PSG

X16

PSGWAV command
Sets waveform on VERA
PSG

X16

READ command
Assigns the next DATA
constant to one or more
variables

C64

REBOOT command
Performs a warm reboot
on the system

X16

RECT command
Draws a filled rectangle
in graphics mode

X16

REM command Declares a comment C64

REN command
Renumbers a BASIC pro-
gram

X16

RESET command
Performs a warm reset
on the system

X16

RESTORE command
Resets the READ pointer
to the first DATA con-
stant

C64

117

RETURN command
Returns from a subrou-
tine to the statement fol-
lowing a GOSUB

C64

RIGHT$ function
Returns a substring from
the end of a string

C64

RND function
Returns a floating point
number 0 <= n < 1

C64

RPT$ function
Returns a string of re-
peated characters

X16

RUN command
Clears the variable state
and starts a BASIC pro-
gram

C64

SAVE command
Saves a BASIC program
from memory to disk

C64

SCREEN command
Selects a text or graphics
mode

X16

SGN function
Returns the sign of a nu-
meric value

C64

SIN function
Returns the sine of an an-
gle in radians

C64

SPC function
Returns a string with a
set number of spaces

C64

SPRITE command
Sets attributes for a
sprite including visibility

X16

SPRMEM command
Set the VRAM address
for a sprite’s visual data

X16

SQR function
Returns the square root
of a numeric value

C64

ST variable
Returns the status of cer-
tain DOS/peripheral op-
erations

C64

STEP keyword
Used in a FOR declara-
tion to declare the itera-
tor step

C64

STOP command
Breaks out of a BASIC
program

C64

118

STR$ function
Converts a numeric
value to a string

C64

SYS command
Transfers control to
machine language at a
memory address

C64

TAB function
Returns a string with
spaces used for column
alignment

C64

TAN function
Return the tangent for
an angle in radians

C64

TATTR function
Return the layer 1 tile at-
tributes at a given x/y co-
ordinate

X16

TDATA function
Return the layer 1 tile at a
given x/y coordinate

X16

THEN keyword
Control structure as part
of an IF statement

C64

TI variable
Returns the jiffy timer
value

C64

TI$ variable
Returns the time HH-
MMSS from the system
clock

C64

TILE command
Changes a tile or charac-
ter on the tile/text layer

X16

TO keyword
Part of the FOR loop dec-
laration syntax

C64

USR function
Call a user-defined func-
tion in machine language

C64

VAL function
Parse a string to return a
numeric value

C64

VERIFY command
Verify that a BASIC pro-
gram was written to disk
correctly

C64

VPEEK function
Returns a value from
VERA’s VRAM

X16

VPOKE command
Sets a value in VERA’s
VRAM

X16

119

VLOAD command
Loads a file to VERA’s
VRAM

X16

WAIT command
Waits for a memory loca-
tion to match a condition

C64

120

Screen Codes

SET 1 SET 2 DEC HEX SET 1 SET 2 DEC HEX
@ @ 0 $00 ! ! 33 $21
A a 1 $01 ” ” 34 $22
B b 2 $02 # # 35 $23
C c 3 $03 $ $ 36 $24
D d 4 $04 % % 37 $25
E e 5 $05 & & 38 $26
F f 6 $06 ’ ’ 39 $27
G g 7 $07 ((40 $28
H h 8 $08)) 41 $29
I i 9 $09 * * 42 $2a
J j 10 $0a + + 43 $2b
K k 11 $0b , , 44 $2c
L l 12 $0c ▁ ▁ 45 $2d
M m 13 $0d . . 46 $2e
N n 14 $0e / / 47 $2f
O o 15 $0f 0 0 48 $30
P p 16 $10 1 1 49 $31
Q q 17 $11 2 2 50 $32
R r 18 $12 3 3 51 $33
S s 19 $13 4 4 52 $34
T t 20 $14 5 5 53 $35
U u 21 $15 6 6 54 $36
V v 22 $16 7 7 55 $37
W w 23 $17 8 8 56 $38
X x 24 $18 9 9 57 $39
Y y 25 $19 : : 58 $3a
Z z 26 $1a ; ; 59 $3b
[[27 $1b < < 60 $3c
£ £ 28 $1c = = 61 $3d
]] 29 $1d > > 62 $3e
↑ ↑ 30 $1e ? ? 63 $3f

← ← 31 $1f   64 $40

SPACE SPACE 32 $20  A 65 $41

121

SET 1 SET 2 DEC HEX SET 1 SET 2 DEC HEX

 B 66 $42   91 $5b

 C 67 $43   92 $5c

 D 68 $44   93 $5d

 E 69 $45  ▒ 94 $5e

 F 70 $46 ◣  95 $5f

 G 71 $47 SPACE SPACE 96 $60

 H 72 $48 ▐ ▐ 97 $61

 I 73 $49 ▀ ▀ 98 $62

 J 74 $4a ▇ ▇ 99 $63

 K 75 $4b   100 $64

 L 76 $4c   101 $65

 M 77 $4d   102 $66

 N 78 $4e ▊ ▊ 103 $67

 O 79 $4f   104 $68

 P 80 $50 ◢  105 $69

◘ Q 81 $51 ▊ ▊ 106 $6a

 R 82 $52   107 $6b

 S 83 $53 ▛ ▛ 108 $6c

 T 84 $54   109 $6d

 U 85 $55   110 $6e

 V 86 $56   111 $6f

◙ W 87 $57   112 $70

 X 88 $58   113 $71

 Y 89 $59   114 $72

 Z 90 $5a   115 $73

122

SET 1 SET 2 DEC HEX

  116 $74

  117 $75

▋ ▋ 118 $76
▆ ▆ 119 $77
▆ ▆ 120 $78

  121 $79

  122 $7a

▜ ▜ 123 $7b

▙ ▙ 124 $7c

  125 $7d

▟ ▟ 126 $7e

▞ ▞ 127 $7f

123

PETSCII Codes

This appendix shows how characters are encoded on the Commander
X16. Like the 8-bit Commodore computers that inspired it, the Com-
mander X16 uses a modified version of the ASCII character set. This
character set is commonly knows as PETSCII, as it was first widely used
on the Commodore PET line of computers. Each character is assigned
to an 8-bit integer value, which is how that character is represented in
memory. Not all 8-bit values have characters, and not all characters are
printable. This table lists each of the characters and their numbers.

CHAR CODE CHAR CODE CHAR CODE

0 RVS
ON 18 $ 36

1 CLR
HOME 19 % 37

2 INST
DEL 20 & 38

3 21 ’ 39
4 22 (40

WHT 5 23) 41
6 24 * 42
7 25 + 43
8 26 , 44
9 27 - 45

10 RED 28 . 46

11 CRSR
RIGHT 29 / 47

12 GRN 30 0 48

RETURN 13 BLU 31 1 49
LOWER
CASE 14 SPACE 32 2 50

15 ! 33 3 51
16 ” 34 4 52

CRSR
DOWN 17 # 35 5 53

124

CHAR CODE CHAR CODE CHAR CODE

6 54 O 79  104

7 55 P 80  105

8 56 Q 81  106

9 57 R 82  107

: 58 S 83  108

; 59 T 84  109

< 60 U 85  110

= 61 V 86  111

> 62 W 87  112

? 63 X 88 ◘ 113

@ 64 Y 89  114

A 65 Z 90  115

B 66 [91  116

C 67 £ 92  117

D 68] 93  118

E 69 ↑ 94 ◙ 119

F 70 ← 95  120

G 71  96  121

H 72  97  122

I 73  98  123

J 74  99  124

K 75  100  125

L 76  101  126

M 77  102 ◣ 127

N 78  103 128

125

CHAR CODE CHAR CODE CHAR CODE

129 150  171

130 151 ▛ 172

131 152  173

132 153  174

F1 133 154  175

F2 134 155  176

F3 135 PUR 156  177

F4 136
<=

CRSR 157  178

F5 137 YEL 158  179

F6 138 CYN 159  180

F7 135 SPACE 89  181

F8 140 ▐ 161 ▋ 182
SHIFT

RETURN 141 ▀ 162 ▆ 183

UPPERCASE 142 ▇ 163 ▆ 184

143  164  185

BLK 144  165  186

CRSR 145  166 ▜ 120
RVS
OFF 146 ▊ 167 ▙ 188
CLR

HOME 147  168  189
INST
DEL 148 ◢ 169 ▟ 190

149 ▊ 170 ▞ 191

126

Memory Map

The Commander X16 has 512 KB of ROM and 2,088 KB (512 KB25 + 40
KB) of RAM with up to 3.5MB of RAM or ROM available to cartridges.

Some of the ROM/RAM is always visible at certain address ranges, while
the remaining ROM/RAM is banked into one of two address windows.

This is an overview of the Commander X16 memory map:

Addresses Description
$0000-$9EFF Fixed RAM (40 KB minus 256 bytes)
$9F00-$9FFF I/O Area (256 bytes)
$A000-$BFFF Banked RAM (8 KB window into one of 256 banks for

a total of 2 MB)
$C000-$FFFF Banked System ROM and Cartridge ROM/RAM (16

KB window into one of 256 banks, see below)

Banked Memory

Writing to the following zero-page addresses sets the desired RAM or
ROM bank:

Address Description
$0000 Current RAM bank (0-255)
$0001 Current ROM/Cartridge bank (ROM is 0-31, Cartridge

is 32-255)

The currently set banks can also be read back from the respective mem-
ory locations. Both settings default to 0 on RESET.

25Developer editions of the Commander X16 typically come with 2MB of banked RAM
rather than 512 MB

127

ROM Allocations

Here is the ROM/Cartridge bank allocation:

Bank Name Description
0 KERNAL KERNAL operating system and drivers
1 KEYBD Keyboard layout tables
2 CBDOS The computer-based CMDR-DOS for

FAT32 SD cards
3 FAT32 The FAT32 driver itself
4 BASIC BASIC interpreter
5 MONITOR Machine Language Monitor
6 CHARSET PETSCII and ISO character sets (up-

loaded into VRAM)
7 CODEX CodeX16 Interactive Assembly Environ-

ment / Monitor
8 GRAPH Kernal graphics and font routines
9 DEMO Demo routines
10 AUDIO Audio API routines
11 UTIL System Configuration (Date/Time, Dis-

play Preferences)
12 BANNEX BASIC Annex (code for some added

BASIC functions)
13-14 X16EDIT The built-in text editor
13-31 – (Currently unused)

32-255 – Cartridge RAM/ROM

Cartridge Allocation

Cartridges can use the remaining 32-255 banks in any combination of
ROM, RAM, Memory-Mapped IO, etc. This provides up to 3.5MB of ad-
ditional RAM or ROM.

RAM Contents

This is the allocation of fixed RAM in the KERNAL/BASIC environment.

128

Addresses Description
$0000-$00FF Zero page
$0100-$01FF CPU stack
$0200-$03FF KERNAL and BASIC variables, vectors
$0400-$07FF Available for machine code programs or custom data

storage
$0800-$9EFF BASIC program/variables; available to the user

The $0400-$07FF can be seen as the equivalent of $C000-$CFFF on
a C64. A typical use would be for helper machine code called by BASIC.

Zero Page

Addresses Description
$0000-$0001 Banking registers
$0002-$0021 16 bit registers r0-r15 for KERNAL API
$0022-$007F Available to the user
$0080-$009C Used by KERNAL and DOS
$009D-$00A8 Reserved for DOS/BASIC
$00A9-$00D3 Used by the Math library (and BASIC)
$00D4-$00FF Used by BASIC

Machine code applications are free to reuse the BASIC area, and if they
don’t use the Math library, also that area.

RAM Banks

This is the allocation of banked RAM in the KERNAL/BASIC environ-
ment.

Bank Description
0 Used for KERNAL/CMDR-DOS variables and buffers

1-63 Available to the user

During startup, the KERNAL activates RAM bank 1 as the default for the
user.

129

I/O Area
This is the memory map of the I/O Area:

Addresses Description Speed
$9F00-$9F0F VIA I/O controller #1 8 MHz
$9F10-$9F1F VIA I/O controller #2 8 MHz
$9F20-$9F3F VERA video controller 8 MHz
$9F40-$9F41 YM2151 audio controller 2 MHz
$9F42-$9F5F Unavailable —
$9F60-$9F7F Expansion Card Memory Mapped IO3 8 MHz
$9F80-$9F9F Expansion Card Memory Mapped IO4 8 MHz
$9FA0-$9FBF Expansion Card Memory Mapped IO5 2 MHz
$9FC0-$9FDF Expansion Card Memory Mapped IO6 2 MHz
$9FE0-$9FFF Cartidge/Expansion Memory Mapped IO7 2 MHz

Expansion Cards and Cartridges
Expansion cards can be accessed via memory-mapped I/O (MMIO), as
well as I2C. Cartridges are essentially expansion cards which are housed
in an external enclosure and may contain RAM, ROM and an I2C EEPOM
(for save data). Internal expansion cards may also use the RAM/ROM
space, though this could cause conflicts.

While they may be uncomon, since cartridges are essentially external
expansion cards in a shell, that means they can also use MMIO. This is
only necessary when a cartridge includes some sort of hardware expan-
sion and MMIO was desired (as opposed to using the I2C bus). In that
case, it is recommended cartridges use the IO7 range and that range
should be the last option used by expansion cards in the system.

MMIO is unneeded for cartridges which simply have RAM/ROM.

130

65c02 OP Codes

131

FM Instrument Patch Presets

† = instrument is affected by the LFO, giving it a temolo or vibrato

0 Acoustic Grand Piano 32 Acoustic Bass
1 Bright Acoustic Piano 33 Electric Bass (finger)
2 Electric Grand Piano 34 Electric Bass (picked)
3 Honky-tonk Piano 35 Fretless Bass
4 Electric Piano 1 36 Slap Bass 1
5 Electric Piano 2 37 Slap Bass 2
6 Harpsichord 38 Synth Bass 1
7 Clavinet 39 Synth Bass 2
8 Celesta 40 Violin †
9 Glockenspiel 41 Viola †
10 Music Box 42 Cello †
11 Vibraphone † 43 Contrabass †
12 Marimba 44 Tremolo Strings †
13 Xylophone 45 Pizzicato Strings
14 Tubular Bells 46 Orchestral Harp
15 Dulcimer 47 Timpani
16 Drawbar Organ † 48 String Ensemble 1 †
17 Percussive Organ † 49 String Ensemble 2 †
18 Rock Organ † 50 Synth Strings 1 †
19 Church Organ 51 Synth Strings 2 †
20 Reed Organ 52 Choir Aahs †
21 Accordion 53 Voice Doos
22 Harmonica 54 Synth Voice †
23 Bandoneon 55 Orchestra Hit
24 Acoustic Guitar (Nylon) 56 Trumpet †
25 Acoustic Guitar (Steel) 57 Trombone
26 Electric Guitar (Jazz) 58 Tuba
27 Electric Guitar (Clean) 59 Muted Trumpet †
28 Electric Guitar (Muted) 60 French Horn
29 Electric Guitar (Overdriven) 61 Brass Section
30 Electric Guitar (Distortion) 62 Synth Brass 1
31 Electric Guitar (Harmonics) 63 Synth Brass 2

132

64 Soprano Sax † 96 FX 1 (Raindrop)
65 Alto Sax † 97 FX 2 (Soundtrack) †
66 Tenor Sax † 98 FX 3 (Crystal)
67 Baritone Sax 99 FX 4 (Atmosphere) †
68 Oboe 100 † FX 5 (Brightness) †
69 English Horn † 101 FX 6 (Goblin)
70 Bassoon 102 FX 7 (Echo)
71 Clarinet † 103 FX 8 (Sci-Fi) †
72 Piccolo 104 Sitar
73 Flute † 105 Banjo
74 Recorder 106 Shamisen
75 Pan Flute 107 Koto
76 Blown Bottle 108 Kalimba
77 Shakuhachi 109 Bagpipe
78 Whistle † 110 Fiddle †
79 Ocarina 111 Shanai †
80 Lead 1 (Square) † 112 Tinkle Bell
81 Lead 2 (Sawtooth) † 113 Agogo
82 Lead 3 (Triangle) † 114 Steel Drum
83 Lead 4 (Chiff+Sine) † 115 Woodblock
84 Lead 5 (Charang) † 116 Taiko Drum
85 Lead 6 (Voice) † 117 Melodic Tom
86 Lead 7 (Fifths) † 118 Synth Drum
87 Lead 8 (Solo) † 119 Reverse Cymbal
88 Pad 1 (Fantasia) † 120 Fret Noise
89 Pad 2 (Warm) † 121 Breath Noise
90 Pad 3 (Polysynth) † 122 Seashore
91 Pad 4 (Choir) † 123 Bird Tweet
92 Pad 5 (Bowed) 124 Telephone Ring
93 Pad 6 (Metallic) 125 Helicopter
94 Pad 7 (Halo) † 126 Applause †
95 Pad 8 (Sweep) † 127 Gunshot

133

Extended FM Instrument Patch Presets
These presets exist mainly to support playback of drum sounds, and
many of them only work correctly or sound musical at certain pitches
or within a small range of pitches.

128 Silent 146 Vibraslap
129 Snare Roll 147 Bongo
130 Snap 148 Maracas
131 High Q 149 Short Whistle
132 Scratch 150 Long Whistle
133 Square Click 151 Short Guiro
134 Kick 152 Long Guiro
135 Rim 153 Mute Cuica
136 Snare 154 Open Cuica
137 Clap 155 Mute Triangle
138 Tom 156 Open Triangle
139 Closed Hi-Hat 157 Jingle Bell
140 Pedal Hi-Hat 158 Bell Tree
141 Open Hi-Hat 159 Mute Surdo
142 Crash 160 Pure Sine
143 Ride Cymbal 161 Timbale
144 Splash Cymbal 162 Open Surdo
145 Tambourine

134

Drum Patch Presets
These are the percussion instrument mappings for the drum number
argument of the ym_playdrum and ym_setdrum API calls, and the
FMDRUM BASIC statement.

56 Cowbell
25 Snare Roll 57 Crash Cymbal 2
26 Finger Snap 58 Vibraslap
27 High Q 59 Ride Cymbal 2
28 Slap 60 High Bongo
29 Scratch Pull 61 Low Bongo
30 Scratch Push 62 Mute High Conga
31 Sticks 63 Open High Conga
32 Square Click 64 Low Conga
33 Metronome Bell 65 High Timbale
34 Metronome Click 66 Low Timbale
35 Acoustic Bass Drum 67 High Agogo
36 Electric Bass Drum 68 Low Agogo
37 Side Stick 69 Cabasa
38 Acoustic Snare 70 Maracas
39 Hand Clap 71 Short Whistle
40 Electric Snare 72 Long Whistle
41 Low Floor Tom 73 Short Guiro
42 Closed Hi-Hat 74 Long Guiro
43 High Floor Tom 75 Claves
44 Pedal Hi-Hat 76 High Woodblock
45 Low Tom 77 Low Woodblock
46 Open Hi-Hat 78 Mute Cuica
47 Low-Mid Tom 79 Open Cuica
48 High-Mid Tom 80 Mute Triangle
49 Crash Cymbal 1 81 Open Triangle
50 High Tom 82 Shaker
51 Ride Cymbal 1 83 Jingle Bell
52 Chinese Cymbal 84 Belltree
53 Ride Bell 85 Castanets
54 Tambourine 86 Mute Surdo
55 Splash Cymbal 87 Open Surdo

135

Macro Language for Music

Overview

The play commands use a string of tokens to define sequences of notes
to be played on a single voice of the corresponding sound chip. Tokens
cause various effects to happen, such as triggering notes, changing the
playback speed, etc. In order to minimize the amount of text required
to specify a sequence of sound, the player maintains an internal state
for most note parameters.

Stateful Player Behavior

Playback parameters such as tempo, octave, volume, note duration, etc
do not need to be specified for each note. These states are global be-
tween all voices of both the FM and PSG sound chips. The player main-
tains parameter state during and after playback. For instance, setting
the octave to 5 in anFMPLAY command will result in subsequentFMPLAY
and PSGPLAY statements beginning with the octave set to 5.

The player state is reset to default values wheneverFMINITorPSGINIT
are used.

Parameter Default Equivalent Token
Tempo 120 T120
Octave 4 O4
Length 4 L4

Note Spacing 1 S4

Using Tokens

The valid tokens are: A-G,I,K,L,O,P,R,S,T,V,<,>.

Each token may be followed by optional modifiers such as numbers or
symbols. Options to a token must be given in the order they are ex-
pected, and must have no spacing between them. Tokens may have
spaces between them as desired. Any unknown characters are ignored.

136

Example:

FMPLAY 0,"L4" : REM DEFAULT LENGTH = QUARTER NOTE
FMPLAY 0,"A2. C+." : REM VALID
FMPLAY 0,"A.2 C.+" : REM INVALID

The valid command plays A as a dotted half, followed by C♭ as a dotted
quarter.

The invalid example would play A as a dotted quarter (not half) because
length must come before dots. Next, it would ignore the 2 as garbage.
Then it would play natural C (not sharp) as a dotted quarter. Finally, it
would ignore the + as garbage, because sharp/flat must precede length
and dot.

Token definitions

Musical notes

• Synopsis: Play a musical note, optionally setting the length.
• Syntax: <A-G>[<+/->][<length>][.]

Example:

FMPLAY 0,"A+2A4C.G-8."

On the YM2151 using channel 0, plays in the current octave an A♯ half
note followed by an A quarter note, followed by C dotted quarter note,
followed by G♭ dotted eighth note.

Lengths and dots after the note name or rest set the length just for the
current note or rest. To set the default length for subsequent notes and
rests, use the ‘L‘ macro.

Rests

• Synopsis: Wait for a period of silence equal to the length of a note,
optionally setting the length.

137

• Syntax: ‘R[<length>][.]‘

Example:

PSGPLAY 0,"CR2DRE"

On the VERA PSG using voice 0, plays in the current octave a C quarter
note, followed by a half rest (silence), followed by a quarter D, followed
by a quarter rest (silence), and finally a quarter E.
The numeral 2 in R2 sets the length for the R itself but does not alter
the default note length (assumed as 4 - quarter notes in this example).

Note Length

• Synopsis: Set the default length for notes and rests that follow
• Syntax: L[<length>][.]

Example values:

L4 quarter note (crotchet)

L16 sixteenth note (semiquaver)

L12 8th note triplets (quaver triplet)

L4. dotted quarter note (1.5x the length)

L4.. double-dotted quarter note (1.75x the length)

Example program:

10 FMPLAY 0,"L4"
20 FOR I=1 TO 2
30 FMPLAY 0,"CDECL8"
40 NEXT

On the YM2151 using channel 0, this program, when RUN, plays in the
current octave the sequenceCDEC first as quarter notes, then as eighth

138

notes the second time around.

Articulation

• Synopsis: Set the spacing between notes, from legato to extreme
staccato

• Syntax: S<0-7>

S0 indicates legato. For FMPLAY, this also means that notes after the
first in a phrase don’t implicitly retrigger.

S1 is the default value, which plays a note for 7/8 of the duration of the
note, and releases the note for the remaining 1/8 of the note’s duration.

You can think ofS is, out of 8, how much space is put between the notes.

Example:

FMPLAY 0,"L4S1CDES0CDES4CDE"

On the YM2151 using channel 0, plays in the current octave the sequence
C D E three times, first with normal articulation, next with legato (notes
all run together and without retriggering), and finally with a moderate
staccato.

Explicit retrigger

• Synopsis: on the YM2151, when using ‘S0‘ legato, retrigger on the
next note.

• Syntax: K

Example:

FMPLAY 0,"S0CDEKFGA"

On the YM2151 using channel 0, plays in the current octave the sequence
C D E using legato, only triggering on the first note, then the sequence

139

F G A the same way. The note F is triggered without needing to release
the previous note early.

Octave

• Synopsis: Explictly set the octave number for notes that follow
• Syntax: O<0-7>

Example:

PSGPLAY 0,"O4AO2AO6CDE"

On the VERA PSG using voice 0, changes to octave 4 and playsA (440Hz),
then switches to octave 2, and plays A (110Hz), then switches to octave
6 and plays the sequence C D E.

Octave Up

• Synopsis: Increases the octave by 1
• Syntax: >

If the octave would go above 7, this macro has no effect.

Example:

PSGPLAY 0,"O4AB>C+DE"

On the VERA PSG using voice 0, changes to octave 4 and plays the first
five notes of the A major scale by switching to octave 5 starting at the
C♯.

Octave Down

• Synopsis: Decreases the octave by 1
• Syntax: <

If the octave would go below 0, this macro has no effect.

140

Example:

PSGPLAY 0,"O5GF+EDC<BAG"

On the VERA PSG using voice 0, changes to octave 5 and plays the G
major scale from the top down by switching to octave 4 starting at the
B.

Tempo

• Synopsis: Sets the BPM, the number of quarter notes per minute
• Syntax: T<1-255>

High tempo values and short notes tend to have inaccurate lengths due
to quantization error. Delays within a string do keep track of fractional
frames so the overall playback length should be relatively consistent.

Low tempo values that cause delays (lengths) to exceed 255 frames will
also end up being inaccurate. For very long notes, it may be better to
use legato to string several together.

Example:

10 FMPLAY 0,"T120C4CGGAAGR"
20 FMPLAY 0,"T180C4CGGAAGR"

On the YM2151 using channel 0, plays in the current octave the first 7
notes of Twinkle Twinkle Little Star, first at 120 beats per minute, then
again 1.5 times as fast at 180 beats per minute.

i

Volume

• Synopsis: Set the channel or voice volume
• Syntax: V<0-63>

141

This macro mirrors the PSGVOL and FMVOL BASIC commands for set-
ting a channel or voice’s volume. 0 is silent, 63 is maximum volume.

Example:

FMPLAY 0,"V40ECV45ECV50ECV55ECV60ECV63EC"

On the YM2151 using channel 0, starting at a moderate volume, plays
the sequenceEC, repeatedly, increasing the volume steadily each time.

Panning

• Synopsis: Sets the stereo output of a channel or voice to left,
right, or both.

• Syntax: P<1-3>

1 Left
2 Right
3 Both

Example:

10 FOR I=1 TO 4
20 PSGPLAY 0,"P1CP2B+"
30 NEXT I
40 PSGPLAY 0,"P3C"

On the VERA PSG using voice 0, in the current octave, repeatedly plays
a C out of the left speaker, then a B♯ (effectively a C one octave higher)
out of the right speaker. After 4 such loops, it plays a C out of both
speakers.

Instrument change

• Synopsis: Sets the FM instrument (like FMINST) or PSG waveform
(like PSGWAV)

• Syntax: I<0-255> (0-162 for FM)

142

Example:

10 FMINIT
20 FMVIB 200,15
30 FMCHORD 0,"I11CI11EI11G"

This program sets up appropriate vibrato/tremolo and plays a C major
chord with the vibraphone patch across FM channels 0, 1, and 2.

143

YM2151 Registers

The YM register address space can be thought of as being divided into
3 ranges:

Range Type Description
$00 .. $1F Global Values Affect individual global parameters

such as LFO frequency, noise en-
able, etc.

$20 .. $3F Channel CFG Parameters in groups of 8, one per
channel. These affect the whole
channel.

$40 .. $FF Operator CFG Parameters in groups of 32 - these
map to individual operators of each
voice.

Global Registers

Addr Register
Bits

7 6 5 4 3 2 1 0

$01 Test
! ! ! ! ! ! LR !

Bit 1 is the LFO reset bit. Setting it dis-
ables the LFO and holds the oscillator
at 0. Clearing it enables the LFO. All
other bits control various test functions
and should not be written into.

$08 Key Control
. C2 M2 C1 M1 CHA

Starts and Releases notes on the 8
channels. Setting/Clearing bits for
M1,C1,M2,C2 controls the key state
for those operators on channel CHA.
NOTE: The operator order is different
than the order they appear in the Oper-
ator configuration registers!

$0F Noise Control
NE . . NFRQ

144

NE = Noise Enable; NFRQ = Noise Fre-
quency; When eabled, C2 of channel 7
will use a noise waveform instead of a
sine waveform.

$10 Timer A High
CLKA1

Top 8 bits of Timer A period setting

$11 Timer A Low
. CLKA2

Bottom 2 bits of Timer A period setting

$12 Timer B
CLKB

Timer B period setting

$14 IRQ Control
CSM . CLK ACK IRQ EN CLK ST
CSM: When a timer expires, trigger
note key-on for all channels. For the
other 3 fields, lower bit = Timer A, up-
per bit = Timer B. CLK ACK: clears the
timer’s bit in the YM_status byte and ac-
knowledges the IRQ.

$18 LFO Freq
LFRQ

Sets LFO frequency. $00 = 0.008Hz
$FF = 32.6Hz

$19 LFO Amplitude
0 AMD
1 PMD

AMD = Amplitude Modulation Depth;
PMD = Phase Modulation (vibrato)
Depth; Bit 7 determines which param-
eter is being set when writing into this
register.

$1B LFO Waveform
CT W

CT: sets output pins CT1 and CT1 high or
low. (not connected to anything in X16);
W: LFO Waveform: 0-4 = Saw, Square,
Triange, Noise; For sawtooth: PM->////
AM->\\\\

LR (LFO Reset)
Register $01, bit 1

Setting this bit will disable the LFO and hold it at level 0. Clearing this

145

bit allows the LFO to operate as normal. (See LFRQ for further info)

KON (KeyON)
Register $08

• Bits 0-2: Channel_Number
• Bits 3-6: Operator M1, C1, M2, C2 control bits:

– 0: Releases note on operator
– 0->1: Triggers note attack on operator
– 1->1: No effect

Use this register to start/stop notes. Typically, all 4 operators are trig-
gered/released together at once. Writing a value of $78+channel_number
will start a note on all 4 OPs, and writing a value of $00+channel_number
will stop a note on all 4 OPs.

NE (Noise Enable)
Register $0F, Bit 7

When set, the C2 operator of channel 7 will use a noise waveform in-
stead of a sine.

NFRQ (Noise Frequency)
Register $0F, Bits 0-4

Sets the noise frequency, $00 is the lowest and $1F is the highest. NE
bit must be set in order for this to have any effect. Only affects operator
C2 on channel 7.

CLKA1 (Clock A, high order bits)
Register $10, Bits 0-7

This is the high-order value for Clock A (a 10-bit value).

CLKA2 (Clock A, low order bits)
Register $11, Bits 0-1

Sets the 2 low-order bits for Clock A (a 10-bit value). Timer A’s period

146

is Computed as:

(64*(1024-ClkA)) / PhiM ms. (PhiM = 3579.545Khz)

CLKB (Clock B)
Register $12, Bits 0-7

Sets the Clock B period. The period for Timer B is computed as:

(1024*(256-CLKB)) / PhiM ms. (PhiM = 3579.545Khz)

CSM
Register $14, Bit 7

When set, the YM2151 will generate a KeyON attack on all 8 channels
whenever Timer A overflows.

Clock ACK
Register $14, Bits 4-5

Clear (acknowledge) IRQ status generated by Timer A and Timer B (re-
spectively).

IRQ EN
Register $14, Bits 2-3

When set, enables IRQ generation when Timer A or Timer B (respec-
tively) overflow. The IRQ status of the two timers is checked by reading
from the YM2151_STATUS byte. Bit 0 = Timer A IRQ status, and Bit 1
= Timer B IRQ status. Note that these status bits are only active if the
timer has overflowed AND has its IRQ_EN bit set.

Clock Start
Register $14, Bits 0-1

When set, these bits clear the Timer A and Timer B (respectively) coun-
ters and starts it running.

147

LFRQ (LFO Frequency)
Register $18, Bits 0-7

Sets the LFO frequency:
• $00 = 0.008Hz
• $FF = 32.6Hz

Note that even setting the value zero here results in a positive LFO fre-
quency. Any channels sensitive to the LFO will still be affected by the
LFO unless the LR bit is set in register $01 to completely disable it.

AMD (Amplitude Modulation Depth)
Register $19 Bits 0-6, Bit 7 clear

Sets the peak strength of the LFO’s Amplitude Modulation effect. Note
that bit 7 of the value written into $19 must be clear in order to set the
AMD. If bit 7 is set, the write will be interpreted as PMD.

PMD (Phase Modulation Depth)
Register $19 Bits 0-6, Bit 7 set

Sets the peak strength of the LFO’s Phase Modulation effect. Note that
bit 7 of the value written into $19 must be set in order to set the PMD.
If bit 7 is clear, the value is interpreted as AMD.

CT (Control pins)
Register $1B, Bits 6-7

These bits set the electrical state of the two CT pins to on/off. These
pins are not connected to anything in the X16 and have no effect.

W (LFO Waveform)
Register $1B, Bits 0-1

Sets the LFO waveform:
• 0: Sawtooth
• 1: Square (50% duty cycle)
• 2: Triangle, 3: Noise

148

Channel CFG Registers

Register
Range

Register Bits
7 6 5 4 3 2 1 0

$20 + channel RL FB CON
$28 + channel . KC
$30 + channel KF . .
$38 + channel . PMS . . AMS

Description
RL Right/Left Output Enable
FB M1 Feedback Level
CON Operator Connection Algorithm
KC Key Code
KF Key Fraction
PMS Phase Modulation Sensitivity
AMS Amplitude Modulation Sensitivity

RL (Right/Left output enable)
Register $20 (+ channel), Bits 6-7

Setting/Clearing these bits enables/disables audio output for the se-
lected channel. (bit6=left, bit7=right)

FB (M1 Self-Feedback)
Register $20 (+ channel), bits 3-5

Sets the amount of self feedback on operator M1 for the selected chan-
nel. 0=none, 7=max

CON (Connection Algorithm)
Register $20 (+ channel), bits 0-2

Sets the selected channel to connect the 4 operators in one of 8 ar-
rangements.

KC (Key Code - Note selection)
Register $28 + channel, bits 0-6

149

Sets the octave and semitone for the selected channel. Bits 4-6 specify
the octave (0-7) and bits 0-3 specify the semitone:

0 1 2 4 5 6 8 9 A C D E
C♯ D D♯ E F F♯ G G♯ A A♯ B C

Note that natural C is at the TOP of the selected octave, and that each
4th value is skipped. Thus if concert A (A-4, 440hz) is KC=$4A, then
middle C is KC=$3E

KF (Key Fraction)
Register $30 + channel, Bits 2-7

Raises the pitch by 1/64th of a semitone * the KF value.

PMS (Phase Modulation Sensitivity)
Register $38 + channel, Bits 4-6

Sets the Phase Modulation (vibrato) sensitivity of the selected channel.
The resulting vibrato depth is determined by the combination of the
global PMD setting (see above) modified by each channel’s PMS.

Sensitivity values: (+/- cents)
0 1 2 3 4 5 6 7
0 5 10 20 50 100 400 700

AMS (Amplitude Modulation Sensitivity)
Register $38 + channel, Bits 0-1

Sets the Amplitude Modulation sensitivity of the selected channel. Note
that each operator may individually enable or disable this effect on its
output by setting/clearing the AMS-Ena bit (see below). Operators act-
ing as outputs will exhibit a tremolo effect (varying volume) and oper-
ators acting as modulators will vary their effectiveness on the timbre
when enabled for amplitude modulation.

Sensitivity values: (dB)
0 1 2 3
0 23.90625 47.8125 95.625

150

Operator CFG Registers

Register
Range

Operator
Register Bits

7 6 5 4 3 2 1 0

$40

M1: $40+channel

. DT1 MUL
M2: $48+channel
C1: $50+channel
C2: $58+channel

$60

M1: $60+channel

. TL
M2: $68+channel
C1: $70+channel
C2: $78+channel

$80

M1: $80+channel

KS . AR
M2: $88+channel
C1: $90+channel
C2: $98+channel

$A0

M1: $A0+channel

AM . . D1R
M2: $A8+channel
C1: $B0+channel
C2: $B8+channel

$C0

M1: $C0+channel

DT2 . D2R
M2: $C8+channel
C1: $D0+channel
C2: $D8+channel

$E0

M1: $E0+channel

D1L RR
M2: $E8+channel
C1: $F0+channel
C2: $F8+channel

Description
DT1 Detune Amount (fine)
MUL Frequency Multiplier
TL Total Level (volume attenuation) (0=max, $7F=min)
KS Key Scaling (ADSR rate scaling)
AR Attack Rate
AM Amplitude Modulation Enable

151

D1R Decay Rate 1 (From peak down to sustain level)
DT2 Detune Amount (coarse)
DR2 Decay Rate 2 (During sustain phase)
D1L Decay Level 1 (Sustain level)
RR Release Rate

Operators are arranged as follows:
name M1 M2 C1 C2
index 0 1 2 3

These are the names used throughout this document for consistency,
but they may function as either modulators or carriers, depending on
which CON ALG is used.

The Operator Control parameters are mapped to channels/operators
as follows: Register + 8op + channel. You may also choose to think of
these register addresses as using bits 0-2 = channel, bits 3-4 = operator,
and bits 5-7 = parameter. This reference will refer to them using the ad-
dress range, e.g. $60-$7F = TL. To set TL for channel 2, operator 1, the
register address would be $6A ($60 + 18 + 2).

DT1 (Detune 1 - fine detune)
Registers $40-$5F, Bits 4-6

Detunes the operator from the channel’s main pitch. Values 0 and 4=no
detuning. Values 1-3=detune up, 5-7 = detune down. The amount of de-
tuning varies with pitch. It decreases as the channel’s pitch increases.

MUL (Frequency Multiplier)
Registers $40-$5F, Bits 0-3

If MUL=0, it multiplies the operator’s frequency by 0.5. Otherwise, the
frequency is multiplied by the value in MUL (1,2,3...etc)

TL (Total Level - attenuation)
Registers $60-$7F, Bits 0-6

152

This is essentially ”volume control” - It is an attenuation value, so $00
= maximum level and $7F is minimum level. On output operators, this
is the volume output by that operator. On modulating operators, this
affects the amount of modulation done to other operators.

KS (Key Scaling)
Registers $80-$9F, Bits 6-7

Controls the speed of the ADSR progression. The KS value sets four dif-
ferent levels of scaling. Key scaling increases along with the pitch set in
KC. 0=min, 3=max

AR (Attack Rate)
Registerss $80-$9F, Bits 0-4

Sets the attack rate of the ADSR envelope. 0=slowest, $1F=fastest

AMS-Enable (Amplitude Modulation Sensitivity Enable)
Registers $A0-$BF, Bit 7

If set, the operator’s output level will be affected by the LFO according
to the channel’s AMS setting. If clear, the operator will not be affected.

D1R (Decay Rate 1)
Registers $A0-$BF, Bits 0-4

Controls the rate at which the level falls from peak down to the sustain
level (D1L). 0=none, $1F=fastest.

DT2 (Detune 2 - coarse)
Registers $C0-$DF, Bits 6-7

Sets a strong detune amount to the operator’s frequency. Yamaha sug-
gests that this is most useful for sound effects. 0=off

D2R (Decay Rate 2)
Registers $C0-$DF, Bits 0-4

153

Sets the Decay2 rate, which takes effect once the level has fallen from
peak down to the sustain level (D1L). This rate continues until the level
reaches zero or until the note is released.

0=none, $1F=fastest

D1L
Registers $E0-$FF, Bits 4-7

Sets the level at which the ADSR envelope changes decay rates from
D1R to D2R. 0=minimum (no D2R), $0F=maximum (immediately at
peak, which effectively disables D1R)

RR
Registers $E0-$FF, Bitst 0-3

Sets the rate at which the level drops to zero when a note is released.
0=none, $0F=fastest

154

	 PREFACE
	 SETUP
	1 Getting to Know Your Commander X16
	 Getting Started
	 Your First Computer Program

	2 Using the Screen and Keyboard
	 Graphic Chracters
	 Colors
	 The X16 Keyboard
	 Screen Modes
	 Editing Text

	3 Graphics
	 More Stuff

	4 Sound
	 More Stuff

	5 APPENDIX
	 Commander X16 BASIC
	 BASIC Statements Table
	 Screen Codes
	 PETSCII Codes
	 Memory Map
	 65c02 OP Codes
	 FM Instrument Patch Presets
	 Macro Language for Music
	 YM2151 Registers

