
FILE INPUT/OUTPUT STATEMENTS
(continued)

OPEN—Opens a channel for input and/or output

to the designated devices,

format; 0PEN//7e# [c^eWcef, address, string]

example: /ine OPEN 1,1.0. "DATA"

where: filei ranges fronn to 255 and relates

the OPEN. CLOSE. CMD. GET#,
INPUT* and PRINT* statements

to each other.

device^ specifies the peripheral

device.

address is a code that tells each
device what operation to

perform.

Note: The string can be used for the

filename with cassette operations or can be

a filename or control information when used

with disk.

when used with disk, string is

[

.

" fifename\ . type]\
,mode "]]

where: (PRO for program file

type is <SEQ for sequential file

|USR for user file

default type is sequential

where:
^^^^^ jg

(R to read sequential file

-|w to write sequential

(file

PRINT#—Sends the contents of the variables

in the list to the device previously OPENed.

format: PRINT* file^.var
|' |

[var .] | '

|

example: line PRINT#1, "ANSWER IS"; X

Note: PRINT* is one keyword with no space
after PRINT. The characters ?# may not be
used as an abbreviation for PRINT*.

INPUT/OUTPUT CONTROL MVRAMETERS
F//e* can be any number from 1 to 255 and is the same number that will be used in the INPUT*, GET* and

PRINT* statements to work with this device. Since file* exceeding 127 were designed for other uses,

numbers 1 to 127 should normally be used. Dewce* specifies the physical address of the device.

Address specifies the operation to be performed based upon the device, and string specifies file name
or control information.

DEVICE ALLOCATION TABLE

DEVICE# DEVICE

Keyboard

1 Cassette Deck

2 RS232 Device

3 Screen

4 Printer

5 Printer

DEVICE* DEVICE

6-7 Other serial bus

devices

8-11 Disk Drive

9-31 Other serial bus

devices

address specifies the operation to be performed based upon the device.

string specifies file name or control information.

ADDRESS CODE OPERATION TABLE
DEVICE ADDRESS CODE OPERATION STRING

Cassette read tape file filename

1 write tape file filename

1 write tape file and place EOT marker
at end filename

Disk cr LOAD file type, read

1 SAVE write command

open data channel drive*, filename

IS command channel

Screen no effect

Printer

1-?

uppercase/graphics

special features (refer to printer

manual)

text is printed

Copyright © 1983 by John Wiley and Sons, Inc.

Designed by Werner Graphics

ISBN 471-88240-2

PRINTER COMMAND TABLE (for Commodore Printer)

PRINT COMMAND OPERATION PRINT COMMAND OPERATION

CHR$(10) Line feed after CHR${26) Repeat graphic

printing select command

CHR$(13) Carriage return CHR$(145) Cursor up (upper-

CHR$(8) Graphic mode case) mode

command CHR$(17) Cursor down (up-

CHR$(14) Double width per/lowercase)

characters mode

CHR$(15) standard character CHR$(18) Reverse field on

mode command

CHR$(16) Tab to position in
CHR${146) Reverse field off

next 2 characters command

CHR$(27) Prefix to CHR$(16)
to specify a dot

position by dot ad-

dress

CONTROL PARAMETER UTILIZATION EXAMPLES
OPEN 1,0

OPEN 1,1,0, "DATA"

OPEN 1,4. 7, "1/15/83

Opens a channel to read from the keyboard.

Opens a channel to read the file named DATA from the cassette tape.

Opens a channel to send upper/lowercase to the printer and prints the

string 1/15/83.

OPEN 4,4:CMD4:LIST Lists the program in memory on the printer.

NOTE: The string at the end of an OPEN statement is sent to the printer or screen as if a PRINT# statement
were used with that device. When the OPEN statement references a cassette deck, it is used for

the filename while its use with a disk can be as a filename or for sending control information to the

disk.

BASIC FUNCTIONS
FUNCTION FORMAT AND DESCRIPTION

ABSfejrprnm;—Returns the absolute value of a

number

ASC^exprS;— Returns the ASC II code number
for the first character of the specified string.

ATHfBxprnm)— Returns the arctangent as an
angle of exprnm radians.

CHR%(exprmt)— Returns the character (string

value) of the specified ASC ii code.

COSfexprnm)— Returns the cosine of an angle

of exprnm radians.

BXP(Bxprnm)— Returns the base of the natural

logarithm (e) raised to the specified power.

^HEfexprnm)— Returns the number of bytes
in memory not being used by BASIC. If the

results of PRE are negative, add 65536 to

the PRE number to obtain the number of

bytes available in memory.

iHTfexprnm^— Returns the integer position of

a number or expression.

LEFTSfBxprSgmxprnm)—Returns the leftmost

exprnm characters of the string expr$.

LEH(exprS}—Returns the length of the speci-

fied string.

LOQfexprnm)— Returns the natural logarithm

of the specified number.

MlOS(expr$,0xprnmJiexprnm2j}—Returns
exprnmi characters from expr$, commenc-
ing with character exprnmy.

PEEK(m0madr}— Returns the decimal value of

a specified memory location.

POS(9xprnm}— Returns the current cursor
position.

RIOHT$rejrprS,exprn/n>—Returns the right-

most exprnm characters of the string expr$.

RHO(exprnm)—Returns a random number be-

tween and 1 if exprnm is positive. If

exprnm is zero, returns, a "randomized"
random number. If exprnm is negative,

returns a preset random number.

SQHfexprnm)— Returns + 1 if exprnm is

positive. - 1 if negative and if its value is

zero.

SIN^ajrprnm;—Returns the sine of an angle
of exprnm radians.

SPCfejrprnmj— Used with the PRINT statement
to print blanks and moves the cursor exprnm
positions to the right.

SQR(mxprnm}—Returns the square root.

jSTATUSj—Returns the Commodore 64's

/ST) status corresponding to the last I/O

operation.

STR$(mxprnm}—Converts a numeric value to

a string.

TAB^axprnm;—Used with the PRINT state-

ment to move the cursor to the specified

position.

TAHfexprnm)—Returns the tangent of the

angle of exprnm radians.

jTIME/ —Returns the value of the interval timer

/Tl { in one-tenth seconds.

^TIME$/ —Reads the internal interval timer and
/Tl$) returns a string of 6 characters in

hours, minutes and seconds.

USR{0xprnm}—Calls the user's assembly
language subroutine whose starting address
is stored in locations 1 and 2.

yAL(oxprS)—Returns the numeric value of a

string.

SOUND AND MUSIC TABLES

COMMODORE 64
BASIC

QUICK REFERENCE GUIDE

VALUES OP X FUNCTION DESCRIPTION

POKE 54296 ,X Oto15 volume

C54277)
<^5POKE < 54284 > ,X see attack/decay table attack/decay

154291/

(-54278)

<5POKE < 54285 > ,x see sustain/release sustain/release

154292 ; table

(-542731

POKE *v 54280? »X see musical note table high frequency

(54287;

(-54272)

54279 >

154286

;

POKE < 54279 > ,X see musical note table low frequency

Is
—

(54276)
POKE < 54283 > ,X see waveform table waveform

(54290)

sets volume

sets voice 1.2,3 rise and
fall times

prolongs voice 1,2,3 note

sets voice 1,2,3 high

frequency note

sets voice 1,2,3 low

frequency note

defines voice 1 ,2.3

waveform

ATTACK/DECAY RATE SETTINGS

HIGH
ATTACK

128

MEDIUM
ATTACK

64

LOW
ATTACK

32

LOWEST
ATTACK

16

HIGH MEDIUM
DECAY DECAY

8 4

Lov;

DECAY
2

LOWEST
DECAY

1

SUSTAIN/RELEASE RATE SETTINGS

HIGH
SUSTAIN

128

MEDIUM
SUSTAIN

64

LOW
SUSTAIN

32

LOWEST
SUSTAIN

16

HIGH MEDIUM
RELEASE RELEASE

8 4

LOW
RELEASE

2

LOWEST
RELEASE

1

WAVEFORM CONTROL SETTINGS MUSICAL NOTE TABLE

TRIANGLE
17

SAWTOOTH
33

PULSE
65

NOISE
129

FREQUENCY C C# D D# E F

HIGH 34 36 38 40 43 45

F# G G* A

48 51 54 57

A#

61

B C C#

64 68 72

LOW 75 85 126200 52 198 127 97 1 11 172126188149169

SCREEN CODE

keys simultaneously.Oode sets switched by holding down the |3lUU ^^d HB
Codes from 128-255 are reversed images of codes 0-127.

POKE 36869,240 sets character set to uppercase POKE 36869,242 sets character set to lowercase

COLOR CODE TABLE

Cod« Color Codo Color Code Color Code Color

Black 4 Purple 8 Orange 12 Gray 2

1 White 5 Green 9 Brown 13 Light Green

2 Red 6 Blue 10 Light Red 14 Light Blue

3 Cyan 7 Yellow 11 Gray 1 15 Gray 3

SCREEN AND BORDER COLOR COMBINATIONS

POKE 53280, varnm changes border color POKE 53281. varnm changes screen color

Values of the numeric variable (varnm) must be between and 15 and represent the selected color code.

DISPLAY EXAMPLE

Statement Operational Result

POKE 53280,0 sets border to black

POKE 53281,2 sets background color to red

POKE 36869,240 sets character set to uppercase (set 1)

POKE 1024,36 places $ in upper left corner of screen

POKE 55796,7 colors the $ yellow WILEY QUICK REFERENCE GUIDES

by Gilbert Held

2.95

REFERENCE GUIDE NOTATIONS AND
FORMAT CONVENTIONS

A standard scheme for presenting the general format of BASIC language statements is employed in this

reference guide. The capitalization, punctuation and other conventions are listed below:

[] Brackets indicate that the enclosed items

are optional. Brackets do not appear in the

actual statements.

{ } Braces indicate that a choice of one of the

enclosed items is to be made. Braces do not

appear in the actual statements.

Ellipses indicate that the preceding item

may be repeated. Ellipses do not appear in

the actual statements.

italics Italics indicate generic terms. The pro-

grammer must supply the actual value or

wording required. See Generic Terms and

Abbreviations.

Line number A line number is implied for all

BASIC language statements in program mode.

Punctuation All punctuation characters, in-

cluding commas, semicolons, colons, quota-

tion marks and parentheses, must appear as

indicated.

UPPERCASE Uppercase letters and words

must appear exactly as indicated.

BASIC PROGRAMMING MODES
DIRECT—Statement(s) entered without a line

number will be immediately executed by

BASIC.

PROGRAM—Statement(s) entered with line

numbers will be executed by the RUN
command.

BASIC STATEMENT FORMATS
Maximum line length is 80 characters on 2 physical lines of 40 characters per line.

Multiple statements permitted on a line using the colon (:) as a statement separator.

Direct Mode format: statement {-.statement .]

Program Mode format: tine statement [-.statement .]

GENERIC TERMS, ABBREVIATIONS
AND DEFINITIONS

arg—Argument.

array—A set of variables that has the same
name and that is distinguished by a number
known as the subscript written in paren-

thesis after the name. An array can have as

many values as there are elements, with

each element of the array having a separate

value.

command^—A number specific to a device that

selects a specific channel or activity within a

device.

const—Any string or numeric constant.

constant—A value that does not change.

device—A Commodore 64 component, such as

the keyboard, or an attachment, such as the

screen, tape recorder, printer or disk drive.

dewce#—A number that specifies a given

device.

expr—Any valid Commodore 64 expression.

expr$—Any valid Commodore 64 string

constant, variable or expression.

exprint—An integer expression.

exprnm—Any numeric constant, variable or

expression.

filename—A cassette or disk file name.

f//e#—A number from 1 to 255 used in the

CLOSE, CMD, OPEN, INPUT#, GET# and

PRINT# statements to work with a device.

floating point—Number with a decimal point.

format—The structure of a BASIC command or

statement.

integer—A whole number ranging between
-32768 and +32767.

ilne—A BASIC program line number.

memadr—The memory address referenced by a

numeric expression, variable or constant.

print zone—The Commodore 64's display is

organized into 4 areas of 10 columns each,

each area known as a print zone.

program name—A name consisting of up to 16

characters that defines the name of a file

containing a program on cassette or disk.

sprite—A high resolution programmable object

contained in a 24 by 21 position dot grid.

statement—A BASIC language statement.

string—One or more characters enclosed in

double quotation marks.

sub—Subscript.

var—Numeric, string or integer variable.

varnm—A numeric variable name.

var$—A string variable.

DISPLAY CONTROL
SCREEN EDITING permits cursor to move around the screen and allows you to make changes to pro-

gram lines.

When unshifted. moves the cursor to the upper left corner of the screen. When used with the

SfffSa or BSa key held down, clears the screen and moves cursor to upper left

corner of the screen.

RETURN

SPACE

DISPLAY CONTROL (continued)

Deletes character to the left of the cursor. Anything else on ihe line shifted one space to left

When used with the asiiaM key a space is inserted at the cursor s position and
everything on the line to the right of the cursor is moved one space to the right.

Moves cursor down one line when unshifted. Moves cursor up one line if the MJSIl^Ji or

key held down.

Causes cu rsor to move to the right if unshifted. Causes the cursor to move to the left if

pffm key held down.

Causes a command or statement to be entered. If ETTTSM key held down causes the cur-

sor to move to the next line.

Causes a blank space to be generated on the screen and the cursor to move one space to

the right.

KEY UTILIZATION
Upper Symbol

Letter or 7
^ Lower Symbol /

Left Right \
Graphic Graphic \

Symbol Symbol \

Press key to display letter or lower symbol.

Press shift and key to display upper symbol.

Press and key to display left graphic

symbol.

Press gaziiaM and key to display right

graphic symbol.

CHARACTER SET SELECTION
Press and ismm to switch between character set 1 and character set 2.

Character set 1 is normal uppercase letters, the digits through 9 and all graphic characters.

Character set 2 includes both uppercase and lowercase letters, the digits through 9 plus some graphic

characters.

PRINTING CONTROL
The use of quote marks or the INS key permits cursor controls, color controls, and function keys to be
entered as "programmed^' reverse characters.

Color Control — Press

Reverse Character— Press

Press

key and any one of 8 color keys.

key and^^^^^key to commence reverse video.

key and or a PRINT to end reverse video

Name format: F[ST]

where: F— represents the first character

which must be alphabetic.

S— is an optional second character

that can be alphabetic or numeric

T— identifies the type of variable as

follows:

% for integer.

$ for string.

VARIABLE NAMING CONVENTIONS
If Type is omitted BASIC
assumes variable is a floating

point number.

Note: Variable name length can be up to 255
characters; however, only first 2 characters
count.

Examples:

A— represents floating point variable.

A%— represents integer variable.

A$— represents string variable.

CAUTION: AL and ALPHA will be treated as the same name since only the first two characters count in

variable names. In addition, when variable names contain two or more alphabetic characters,

the user should be careful that there is no conflict with BASIC keywords, such as IF, TO or ST.

BASIC OPERATORS
Operation Operator Example

ARITHMETIC
Exponentation I AIB
Unary Minus - A
Multiplication A*B
Division i A/B
Addition + A + B
Subtraction A - B

RELATIONAL
Equal

Not equal to < >
A B

A < > B

Operation Operator Example

RELATIONAL (conlir-;

Le^s than A < B
Greater than > A > B
Less than or < - A < B

equal to

Greaio" 'han or A > - B
equal to

BOOLEAN
Logica* compic^ic ^' NOT NOT A
Logical AND AND A AND B
Logical OR OR A OR B

SYSTEM COMMANDS
These commands result in the computer performing

normally entered without a line number; however
prefixing the command with a line number.

CONT— Restarts the execution of a program
previously stopped by the pressing of the

STOP key or the execution of a STOP or

END statement within a program. Program
will restart at the exact place it previously

terminated,

format: CONT
LIST—Causes the entire program or the indi-

cated program lines to be displayed,

format: LIST[//>7e J - [///^e2]

LOAD—Causes a program from cassette tape or

disk to be transferred into the Commodore
64's memory, erasing any BASIC program
previously entered into the computer. If no
filename is specified the first program en-

countered on tape will be loaded,

format: LOAD['7/7ename", dewce#, address]

Note: Unspecified device# causes program
to load from cassette. Unspecified address
causes the program to LOAD starting at

memory location 2048. If a secondary ad-

dress of 1 is used, program will LOAD at the

memory location from which it was saved.

an operation at the system level. The commands are

most commands can also be used in a program by

NEW—Causes the current program to be erased
from memory so a new program can be
entered from the keyboard,

format: NEW
RUN—Causes the program currently in memory

to be executed beginning at its lowest

numbered line or at the specified line

number.

format: RUN[//ne]

SAVE Causes the program currently in

memory to be saved on tape or disk. The
program SAVEd will remain in the

Commodore 64's memory after the save
operation.

format: SAVE ["filename, device^, address]

Note; If device# not specified the

cassette will be used.

VERIFY Checks the program on tape or

disk against the program in the

Commodore 64's memory,

format: VERIFY ['7/7er7ame", dew'ce#]

Note: If device# not specified the cassette

will be used.

BASIC LANGUAGE STATEMENTS
BRANCHING

format:

GOSUB— Results in a branch to the indicated

line number. A RETURN statement causes a

branch back to the instruction following the

GOSUB.
format: GOSUB line

example: line GOSUB 500

GOTO—Causes an unconditional branch to the

indicated line number.

GOTO//r?e /

GO TO line \

example: line GOTO 500

IF-THEN—Causes the branch or the execution

of a statement to occur if the indicated expres-

sion is true.

(GOTO line

format: IF expr < THEN line

(THEN statement

example: line IF X>4 THEN X = 0:M = M-f 1

Note: On IF expr THEN statement, if the ex-

pression is false, the entire remainder of the

line is not executed.

ON-GOSUB—Causes a conditional subroutine
call based upon the current or computed value of

the expression. The computed value must be in

the range to 255. If the computed value does

not have a corresponding line number given, no
GOSUB will be performed.

format: ON exprnm GOSUB line[Jine .

]

example: line ON X GOSUB 100,200,300
Note: The value of the numeric expression
must be in the range to 255. If the value is

or exceeds the number of line numbers in the

list, the statement will be ignored.

ON-GOTO—Causes a conditional branch based
upon the current or computed value of the ex-

pression. The computed value must be in the

range to 255.

If the computed value does not have a corre-

sponding line number given, no GOTO will be per-

formed.

format: ON exprnm GOTO fine[,line
]

example: line ON X GOTO 100.200,300

Note: The value of the numeric expression
must be in the range to 255. If the value is

or exceeds the number of line numbers in the

list, the statement will be ignored.

RETURN— Results in a program branch to the

statement immediately following the most recent-

ly executed GOSUB or ON-GOSUB statement,

format: RETURN
example: tine RETURN

MEMORY REFERENCE

CLR— Initializes all numeric variables and array

elements to zero, assigns a null value to all str-

ings, un-DIMensions all arrays and RESTORES
the DATA pointer back to the beginning.

format: CLR

example: line CLR

POKE Places the specified value into the

designated memory address,

format: POKE memadr, exprnm

where: 0</T?e/7)ad/'< 65536
< exprnm < 255

Example: line POKE 1666.32

DATA—Creates a list of values to be assigned to

variables through the use of a READ statement,

format: DMA constant[,constant]

example: line DATA 1 ,3,5,"JOHN"

DEF FN—Statement that permits special func-

tions to be defined.

format: DEF FN letter[letter]{arg) = exprnm

example: line DEF FNA{X)=3*X + 5

DIM—Reserves space in memory for an array or

matrix of variables.

format: DIM var{sub)[.var{sub)
]

example: line DIM A{20),B(12),C(12,2)

END—Terminates an executing program and

generates the message: READY.

format: END
example: line END

FOR— Initiates a loop that repeats execution of

all instructions bounded by the corresponding

NEXT statement until the automatically in-

cremented variable attains the value exprnm^. If

STEP clause omitted an increment of + 1 is used.

format: FOR varnm = exprnm^ TO
exp/'nm2[STEP exprnm^]

example: line FOR I = 2 TO 20 STEP 2

GET—Statement that receives one character at

a time from the keyboard and assigns it to the

specified variable.

format: GET var$lvar$. . .]

example: line GET X$

INPUT—Optionally displays a prompt message
and then accepts input data, assigning values to

the variables listed.

format: INPUT ["prompt message";]var [,var

example: line INPUT "ENTER NUMBER";X
Note: If no input is entered by the user,

variables retain their previous values.

LET—Assigns a value to the specified variable.

format: [LET]i/ar = expr

example: line LET A = 8 + C

NEXT— Defines the limit of a loop initiated by a

FOR statement.

format: h\EXT[varnm, .]

example: tine NEXT I

PROCESSING STATEMENTS
PRINT—Outputs values to the display.

format: PR\m[J/\B{exprnm)]var / : \

[var
] / : I

^ '
f

\ . i

where; TAB moves PRINT position to the
column specified.

[,] COMMA moves the beginning of the
next item to be displayed to the next
print zone on the present line or posi-
tion on the next line

[;] SEMICOLON continues display im-

mediately after previous output
displayed.

example: line PRINT "SALES = ";X

Note: PRINT may be abbreviated as ?.

READ—Assigns values from DATA statements to

variables in the READ statements.

format: READ var[,var
. .]

example: READ X,Y,P$

REM—Nonexecutable statement that permits
remarks to be placed in a program,

format: REM remark

example: line REM OUTPUT RESULTS
Note: REM statements are not terminated by
a colon. They continue to the end of the line,

RESTORE—Causes the next READ statement
values to be assigned from the first DATA state-
ment in the program.

format: RESTORE
example: line RESTORE

STOP—Causes the program to halt execution
and display the message: BREAK IN LINE XXXX.

] format: STOP

example: line STOP

SYS—Calls a machine language program
located at the specified address.

format: SYS exprnm

example: line SYS 64802

WAIT— Halts a program until a specified
memory location attains a defined value.

format: WAIT memadr, exprnm^ [exprnm^]

example: line WAIT 36868,144,16

FILE INPUT/OUTPUT STATEMENTS
CLOSE—Causes the file that was started in an

OPEN statement to close.

format: CLOSE f/7e#

example: line CLOSE 1

CMD—Changes the normal output device of the

Commodore 64 from the screen to the

specified file. This statement permits data

and listings to be sent to such devices as

the printer, tape drive or disk drive. The
string, where specified, is sent to the file,

format: CMD file^lstring]

example: line CMD 1

QET#—Causes data to be received one byte at

a time from any OPENed device.

format: GET# file^yar[,var
]

example: line GET# 1,X$

INPUT#—Retrieves data from the designated
file number and assigns them to the specified
variables.

format: INPUT# //7e#,var[i/a/'
]

example: line INPUT# 1,X$

