

INTRODUCTION 1

Programming
the X16 for
beginners

The Definitive Guide to BASIC On The
Commander X16

Justin Baldock

INTRODUCTION 2

Copyright 2022 by Justin Baldock – All rights reserved.
It is not legal to reproduce, duplicate or transmit any part of this document in either
electronic means or printed format. Recording of this publication is prohibited.

INTRODUCTION 3

This book is dedicated to Phil and Mary Baldock.
More loving and supportive parents I could not ask for.

INTRODUCTION 4

Table of Contents
Table of Contents ... 4

Introduction ... 13

Acknowledgements .. 13

What is this book about? .. 13
Who is this book for? .. 13
Who should walk away from this book? ... 13
Prerequisite Knowledge .. 14

How you learn .. 14

How to use this book .. 14
How this book is organised ... 15
Conventional Terms .. 15
Icons used to highlight tips .. 15
How to type in Programs ... 16

Book website .. 16

Related Texts .. 17

About the Author .. 18

Chapter 1 – The Commander X16 .. 20

An Overview ... 20

The Hardware ... 21
Central Processing Unit (CPU) ... 21
How much memory does the X16 have? ... 22
Memory and storage ... 23
Storage .. 23
Keyboard ... 23
What accessories are needed for the Commander X16? .. 23
Exercise - Hardware Components ... 24

The Software .. 24
BASIC ... 24
KERNAL .. 24
Text Graphics ... 24
Bitmap Graphics .. 25
Sprite Graphics .. 25
Music and Sound ... 25
Connectivity ... 25
How to program the X16? ... 25
Learning how to use the Commander X16 .. 26

Emulator ... 26
Setup X16 emulator on Windows .. 26
Setup X16 emulator on Linux .. 26
Setup X16 emulator on macOS ... 26

Software Development Environment .. 29
Programming on the X16 .. 29
Cross-Platform Development .. 29

Further Reading .. 29

INTRODUCTION 5

Chapter 2 – First Steps .. 30

What is Programming? .. 30
What is a Programming Language? ... 31
Machine Code, and Assembly ... 32

What is BASIC ... 33

Reasons to learn BASIC. .. 33

Interacting with the X16 ... 34

Numbers ... 34
Decimal .. 34
Binary .. 35
Hexadecimal .. 35
Octal .. 36
Exercise - Numbers .. 38

Bits, Bytes and Words ... 38
Bit .. 38
Byte ... 38
Nibble .. 38
kB vs KiB? ... 39
Word .. 39

Endianness .. 39

Variables ... 40
Data Types ... 40
BASIC Data Types ... 41
Variable Rules .. 42

Constants .. 43

True and False ... 44

Mathematical Operators and Precedence ... 44

Functions .. 45

Expressions ... 45

Learn the language ... 46
Join the community ... 46

Chapter 3 – Introduction to BASIC ... 47

Beginning BASIC Statements ... 47
Numbers, Operators, Expressions and Precedence. ... 47
Keywords and statements ... 48
PRINT statement ... 50
POKE Statement .. 51
VPOKE Statement .. 52
Multiple Statements .. 54

Introduction to Variables .. 56
LET statement .. 56
Rules of Variables in BASIC .. 58

Functions .. 59
Absolute Value (ABS) function .. 60
Integer (INT) function .. 61

INTRODUCTION 6

Nesting of functions .. 62
Random (RND) function .. 63
Free Memory (FRE) function ... 64
PEEK function .. 65
VPEEK function .. 66

String functions ... 67
LEFT$ function ... 67
RIGHT$ function .. 68
MID$ function ... 68
Length (LEN) function .. 68
ASC function .. 69

Mathematical Functions ... 69
Sine (SIN) function ... 69
Cosine (COS) function .. 69
Tangent (TAN) function ... 69
Π (Pi) constant ... 69
Logarithm (LOG) function .. 70
Square Root (SQR) function ... 70
Value (VAL) function .. 70
Sign (SGN) function ... 71

Time functions .. 71
Time (TI) function .. 72
Time$ (TI$) function .. 72

The REM statement .. 72
Good Comments ... 72
Comment Keywords .. 73
Remarkable comments ... 74

Further Reading .. 75

Chapter 4 – Writing BASIC programs .. 76

Immediate Mode vs Deferred Mode ... 76

Commands .. 77
LIST command ... 77
RUN command .. 78
END Statement .. 79
NEW command .. 80
OLD command ... 81
CLR command .. 81
RESET command .. 81

Editing a program ... 82
Entering a program .. 82
Editing a program .. 83
Edit a line ... 83
Delete a line .. 83
Move a line .. 83

Storage ... 85
SAVE command ... 85
VERIFY command .. 86
LOAD command ... 87
DOS command ... 87
ST variable ... 87

INTRODUCTION 7

Floppy Disk .. 88

Interacting with the user ... 88
GET statement ... 89
INPUT statement ... 89
MOUSE command ... 91
Mouse Detail (MX/MY/MB) Integer function .. 92
Joypad (JOY) statement ... 92

Error reporting .. 94
Error Messages .. 94

Interacting with devices .. 94
OPEN command .. 95
INPUT# statement ... 96
GET# statement ... 96
Status (ST) reserved variable ... 97
PRINT# statement ... 97
CMD command .. 98
CLOSE command ... 98
WAIT statement .. 98

Debugging ... 98
Post-mortem debugging .. 99
Print debugging ... 100
Breakpoints ... 100
STOP statement ... 101
CONT statement .. 101

BASIC Errors .. 102
TODO list BASIC errors, about 30+ of them. .. 103

Chapter 5 – Control and Data Structures ... 105

Conditional Logic .. 105
Boolean Values .. 105
Conditional Expressions .. 106
Relational Operators ... 106
Boolean Operators .. 107

Branching ... 109
The IF-THEN Statements ... 110
The GOTO Statement .. 112
The ON statement ... 114

Data Structures ... 116
What is an Array? .. 117
One-Dimensional Array ... 118
Two-Dimensional Array ... 118
Multi-dimensional Array? .. 119
Array Summary .. 119
DIM Statement .. 119
Linked List .. 121
The Stack ... 122

Loops .. 122
FOR-NEXT commands .. 124
IF-GOTO ... 127
Infinite Loops ... 127

INTRODUCTION 8

Subroutines .. 129
DEF FN statement .. 131
The GOSUB-RETURN statements ... 132
Recursion ... 133

Data Storage ... 134
READ, DATA and RESTORE commands. ... 134

Sorting Data .. 136
Bubble Sort .. 136
Insertion Sort ... 138
Selection Sort .. 141
Shell Sort ... 141
Quicksort ... 142

Searching Data .. 145
Linear Search ... 145
Binary Search ... 145

References .. 147

Chapter 6 – Graphics with VERA ... 149

Introducing VERA .. 149
Palette ... 150

Text Mode .. 151
COLOR command .. 151
Character Graphics .. 152
ISO Mode ... 154
Control Codes .. 155
ASC, CHR$.. 157
Position (POS) function ... 157
Space (SPC) function .. 157

Advanced graphics .. 158
SCREEN command ... 158
PSET command .. 159
LINE command .. 159
FRAME command .. 159
RECT command ... 160
CHAR command ... 160
VPOKE statement .. 161
VLOAD statement .. 161

Layers ... 162

Tiles .. 162

Sprites .. 162

Further Reading .. 162

Chapter 7 – BASIC Sound .. 163

Sound Theory .. 164
Frequency vs Pitch ... 164
Stereo Sound ... 164
Volume .. 164

Chapter 8 – Design Methods ... 167

INTRODUCTION 9

Design Patterns ... 167

Design Methodologies .. 167
Waterfall Model .. 167
Iterative and incremental Model .. 168

Planning Documents ... 168
Specification Documents ... 168
Scope Creep ... 169
Design Documents ... 169
Minimum Viable Product .. 170
Testing ... 171

Structured Programming ... 171
Problem Analysis ... 172
Analysis Paralysis ... 173
Tree Diagrams ... 173
Creating subroutines ... 174
Stubbing subroutines .. 175
Data Tables .. 175

Flowcharts .. 176
Flowchart symbols ... 176
Flowchart flow ... 177
Creating and refining a flowchart .. 177

UML .. 179

Problem-Solving .. 179
Styles ... 180
Eight rules .. 181

Creating Code from the Design .. 183
Guiding ideas for designing ... 183
Boy Scout Rule ... 183
Triple check your code and re-read documentation ... 183
Code appearance matters ... 184
Good coding practices ... 184

Code components ... 184
Algorithms ... 185
Code blocks ... 185
Patterns ... 185
Library ... 186
Studying components .. 186

Code Blocks .. 188
Fibonacci Numbers .. 188
Random Number ... 188
Low and high bytes of memory address .. 188

Learning how to design a program .. 190

Software Development Tools .. 193
Cross-platform Development .. 193
Version Control ... 193

Optimisation ... 195

Further Reading .. 196

INTRODUCTION 10

Chapter 9 - Advanced BASIC .. 198

Memory Map .. 198
Base Memory .. 198
Banked Memory .. 198
VERA Video Memory ... 198

Optimizing .. 198
Processing Time - Floating Point vs Integer ... 198
Processing Time - Constants vs Variables .. 199
RAM Usage - Floating Point vs Integer .. 200

Using Machine Language Code .. 201
Check out 8-Bit Show and Tell video, 10 rarely used commodore 64 basic features 201
USR .. 201
SYS ... 201

Tokens .. 201

BASIC tokenized file format .. 202
How BASIC programs are stored on disk ... 203

Advanced Debugging .. 203
MONITOR (MON) command ... 203

Program Chaining ... 204

Chapter 10 – Application Case Study ... 205

Palette Editor .. 205
Specification and Design documents .. 205
Problem Analysis ... 205
Tree Diagram ... 208
Flow Chart ... 208

Further Reading .. 210

Chapter 11 – Designing a game .. 211

Definition of a game ... 211
What is a game? .. 211
Why play a game? ... 211

Building blocks of a game .. 212
Genres ... 212
Story .. 215
Gameplay .. 216
Random ... 216
Skills needed .. 217

Design ... 218
Know the limitations ... 218
Game Design Document .. 219
Protoyping ... 224
Software Design Description Document ... 224
Play testing the MVP ... 224

Further Reading .. 225

Chapter 12 – Game Case Study ... 226

Game Idea .. 226

INTRODUCTION 11

One Page Pitch .. 226

Epilogue ... 228

Practice ... 228

Learn and experiment with your tools .. 228

Improving BASIC ... 229

Beyond BASIC ... 230
COMAL ... 230
FORTH .. 230
C .. 230
Assembly Language ... 230

Final Word .. 231

References .. 233

Extra material ... 233
Books ... 233
Articles ... 233
Websites .. 233

References .. 233

Figures, Tables, Programs, Lists ... 235
List of Figures .. 235
List of Tables .. 235
List of Program Listings ... 236
List of Virtual Screens .. 237

Appendix .. 239

Appendix X – VERA Video memory map .. 239

Appendix X – VERA Default Palette ... 240

Appendix X – Memory-Map .. 241

Appendix X – CHR$ codes .. 243

Appendix X – Screen Colour Codes .. 245

Appendix X – ... 245

Appendix X – BASIC keywords, Type, Syntax, Modes, Token Codes and Abbreviated form 246

Appendix X – BASIC Error messages .. 249

Appendix X - BASIC Tokens ... 251

Appendix X – Music Notes .. 252

Appendix X – Decimal-Hexadecimal Conversion Table .. 253

Appendix X - Memory Map ... 255

Appendix X – Exercise Solutions .. 257

Glossary ... 258

Index .. 260

Templates Bits .. 263

INTRODUCTION 12

Exercise - Numbers .. 263

INTRODUCTION 13

Introduction

"Ripples are made by those reckless enough to jump into the ocean." -
Michael Bassey Johnson

Acknowledgements

This book began development in January 2020. Special thanks are due to my parents who
have supported me my entire life. Without them, I would not have spent countless hours
tinkering and playing on the Commodore 64, Amiga 500, a PC 486-SX and gaining a career in
IT.

What is this book about?

The main goals are to teach the BASIC programming language on the Commander X16 and
provide a handy reference book about the Commander X16. It will cover programming in
BASIC as well as some design theory. An emphasis will be placed on good programming
practices such as easy to read code that can be enhanced quickly and is well documented.

For these reasons, this book has two kinds of programs. First, short programs are intended
to be easy to understand to teach a concept. Second, more extended programs that use
graphics, sound, etc. The shorter programs will often show how BASIC commands are used.
The more extended programs are designed to be practical applications for you to use in
your future work and study.

Who is this book for?
This book is for you if you can answer 'yes' to any of the following questions.

• Do you want to learn how to program BASIC on the Commander X16?

• Do you want to learn more about how the Commander X16 works?

• Do you want a handy book to refer to when programming?

• Do you want to improve your problem-solving skills?

• Are you interested in creating games on the Commander X16?

Who should walk away from this book?
If you can answer 'yes' to any of these questions.

• Are you an expert in programming BASIC on the Commander X16?

• Do you want to learn Assembly programming on the Commander X16?

• Are you looking for a reference book that covers all the technical

details in excruciating detail?

• Would you rather eat rotten eggs than learn something new?

INTRODUCTION 14

Prerequisite Knowledge
This book combines everything I have learned about BASIC programming. I have tried to
write it for the average person. The hope is that this book is suitable for anyone to pick up
and understand. Earlier programming experience is not needed but is helpful. It is assumed
you are familiar with using computers, connecting to power and display, and typing on a
keyboard.The content covers a broad range of topics to hopefully provide a solid base of
skills for those studying it.

How you learn

There is a discussion between academics about learning styles [1]. Amongst the various
learning style models, there does appear to be some commonality. It comes down to how
you prefer information to be presented, how you like to process new information, how you
take in information and how you organise and progress towards understanding. The only
certainty is that we each learn in our way and at our speed.
TODO improve this section

How to use this book

I have tried to create a super helpful learning resource for you, and I have a few
recommendations on how to get the most from it.

• Slow down. The better you understand the concepts, the less effort

will bed needed to memorise them

• Limit your reading to 30-45 minutes. Once you start to lose focus,

you will not have quality learning

• If it is helpful for you, write notes. There is evidence that is

writing your notes while reading can increase the learning experience

• If it is helpful for you, read the book aloud. There is evidence that

hearing information can increase the learning experience

• Write down your ideas! Once you start to explore new concepts, you

will begin to create ideas for your programs. Capture these ideas as

you have them

• Create something. Do something beyond the examples in this book.

Experiment! The best way to learn programming techniques is to try

things out. Once you have seen how I present a solution to a problem,

try, and solve the same problem a different way

• You are learning a foreign language, one of the many different

computer languages. To learn any language, you must practice,

practice, practice

INTRODUCTION 15

• There will be elements that are repeated. This book aims to help you

learn how to program the Commander X16. Repetition helps with

retention

• There may be elements that appear but are not explained until further

in the book

• Follow up on the recommended reading once you have finished reading

this book. You will gain understanding by seeing how other people

solve problems. You may notice patterns or techniques that you can

apply. Like with the example in this book, you should experiment with

these

TODO note about summary sections.
TODO should I include practice code questions with examples in the back?

How this book is organised
This book is made up of 13 chapters split into three main parts.
Part 1: Chapter 1, 2, 3, 4
These cover the basics of programming and the BASIC programming language.
Part 2: Chapter 5,6,7,8
These chapters cover more advanced concepts and theory and the use of the Commander
X16 support chips for graphics and sound.
Part 3: Chapter 9,10,11, 12
These chapters provide the capstone of the book. Theory on the design of games and a
complete case study in creating a game and ending in some final words and pointers for
extra resources.

Conventional Terms
The Commander X16 may be shortened to X16.
The Commodore 64 may be shortened to C64.
The special Commander X16 logo keys, found on the bottom row next to the Ctrl key, will be
called the ‘X16 Key’.
Hexadecimal numbers are represented with a leading dollar sign $. There is hexadecimal to
decimal conversion table in Appendix XXX
Binary numbers are represented with a leading percentage sign %. If you are not familiar
with hexadecimal or binary, do not worry. That will be covered.

Icons used to highlight tips

This icon is used to highlight a few points which you should help
you understand the concept.

INTRODUCTION 16

This icon is used to highlight an exercise you can do. Answers or
possible solutions to the exercises are in Appendix X **UPDATE**

This icon is used to highlight technical issues.

This icon is used to highlight potential problems or issues.

How to type in Programs
Some of the programs in this book will have special control characters. These characters
enable the computer to change the colour of text, move the cursor, etc. To make it easier I
have used the following conventions.

Program listings will contain descriptive words within square braces which indicate special
characters are needed. For example [8 SPACE] would mean press the space bar 8 times, or
[2 UP] would mean press and hold the shift key and then the up-cursor key twice.

Table 1 - Control Key Conventions

[SPACE] Press the space bar key
[UP] SHIFT key and UP Cursor key

[DOWN] SHIFT key and DOWN Cursor key
[LEFT] SHIFT key and LEFT Cursor key
[RIGHT] SHIFT key and RIGHT Cursor key
[BLACK] CTRL key and 1 key
[WHITE] CTRL key and 2 key

[RED] CTRL key and 3 key
[CYAN] CTRL key and 4 key

[PURPLE] CTRL key and 5 key
[GREEN] CTRL key and 6 key

[BLUE] CTRL key and 7 key
[YELLOW] CTRL key and 8 key
[REVERSE] CTRL key and 9 key

Book website

The code listed in this book is available from the GitHub website.
https://github.com/abc

INTRODUCTION 17

This web site address will be referred to as the book website. The book website will contain
all the program listings as well as errata. This is the web site for this book and will be
updated with content when appropriate.

Related Texts

A lot of research was done in creation of this book. Many Commodore 64 programming
books from the 1980s were useful. To help the reader I have included the full biblography of
all the books, articles, research papers I used.

Some of the chapters touch on modern program design theory. I have included sections
discussing these theories, methods and models to assist with BASIC programming. Many of
these concepts have entire books dedicated to them.

Many chapters will include a section at the end labelled as "Further Reading". There will be
recommendations for books or websites which may cover concepts or code in far more
detail.

INTRODUCTION 18

About the Author

When I was eight years old, my father brought home a
Commodore 64. We had a tape deck, and it was
connected to an old black and white TV. Dad taught
computing in the military and thought they would
become essential, and he wanted his kids to understand
them. I remember borrowing some of the Usborne
children’s programming books from the local library in
Darwin. These books are now free from the publisher,
https://usborne.com/au/books/computer-and-coding-
books

My first serious programming book was ‘Your First
Commodore 64 Program’ by Rodnay Zaks. It was
colourful and had beautiful drawings, making it very
approachable for me. This book helped me learn the
fundamentals.

I would spend many hours typing up programs from the
‘Compute’ magazines. As I got older, I played more
computer games. In the 90s, I upgraded to the Amiga
500, then on a 486 PC and so on. During that time, there
was still this foundation of wanting to create and make
my own stories.

I naturally started working in IT when I was 19 and have
continued ever since. I have been a hobby programmer
most of my life, and I have published several
programming tutorials online.

INTRODUCTION 19

PART I:

A Call to Adventure

“Knowledge is an unending adventure at the edge of uncertainty.” – Jacob
Bronowski

Chapter 1 – The Commander X16

Chapter 2 - First Steps

Chapter 3 - Introduction to Programming

Chapter 4 - Writing BASIC

CHAPTER 1 – THE COMMANDER X16 20

Chapter 1 – The Commander X16

"All our dreams can come true, if we have the courage to pursue them."
Walt Disney.

An Overview

The Commander X16 is a modern retro computer envisioned by David Murray. David saw a
need for a modern retro-styled computer made with current off the shelf components. A
group of another interested enthusiasts joined him in the project. Collecting and
programming on real retro computers are fun, but there are drawbacks. The hardware is old
and is starting to fail. Few of the old components are made anymore, and finding parts
means stripping down old computers. The old computers were designed to plug into
monochrome monitors or analogue antenna connectors on TVs. These old monitors and TVs
are also becoming hard to collect. Typically, the old computers had design drawbacks to
save money or address features of CPU or support chips. These old computers have been
studied, documented and highly clever people have worked out ways of stretching the
hardware to create programs no one at the time could have imagined. This has raised the
standard for new software. To release a game on the C64, you must be a true expert in all
programming tricks.

8-bit computers are great for learning about computer architecture and programming
because they are small and simple enough to understand with time and study. David’s
design is based on the Commodore VIC-20 and C64 computers of the 1980s but made
simpler, faster, and more capable. Unfortunately, while the Commander X16 is based on
Commodore VIC-20/C64, it is not fully compatible with those original computers.

The hardware specifications are.
• A real 65C02 Microprocessor running at 8Mhz
• 64 KB of main RAM
• 512 KB or 2048 KB of banked RAM
• **CHECK** 128 or 512 KB of banked ROM
• VERA Video controller in FPGA.
• 128 KB of Video RAM
• 640x480 or 320x240 pixel
• 256 colours out of a palette of 4096 colours
• 2 layers supporting tiles and bitmap modes
• 128 sprites, the limit of **CHECK** per line
• Sound **TODO**
• Two real 6522 VIA I/O Controllers

The hardware connections are.
VGA (480p) and Composite (480i)
PS/2 keyboard
PS/2 mouse

CHAPTER 1 – THE COMMANDER X16 21

Two NES/SNES controller
SD Card
Commodore IEC
RS-232
3.5mm audio

To see David’s original presentation

The 8-Bit Guy: My dream computer – Part 1
The 8-Bit Guy: My dream computer – Part 2

TODO compute first book of C64 – more than just another computer
The 65C02 CPU can only address 64 Kb of memory. The X16 uses a memory banking scheme
to allow it to access much more RAM and ROM memory.

VERA
A discussion about VERA and graphics

References

The Hardware

Central Processing Unit (CPU)
At the heart of the Commander X16 is the Western Design Centre 65C02S microprocessor.
Before you begin programming the computer you should become familiar with the
processor itself.

The 65C02 is an enhanced version of the 8-bit MOS Technology 6502. The 6502 was
originally released in 1975 and sold for 1/6 the price of competing processors from Intel and
Motorola. The clock rate was 1 MHz to 3 Mhz. The 6502 was used in many computers and
home consoles of the time. Along with the Zilog Z80 processor, it started the home
computer revolution of the 1980s.

The main advantages of the 65C02 are significantly reduced power usage, a clock rate up to
14 MHz’s The Commander X16 only uses the 65C02 up to 8 MHz due to timing and the use
of other support chips. The 65C02 also has an increased number of processor commands,
and it also fixes several bugs found in the original 6502. Most importantly for the
Commander X16, the 65C02 is still in production today. Microprocessors have a set of
instructions that they understand and perform tasks with. Some instructions have different
modes, resulting in different operation codes inside the central processing unit (CPU). Each
instruction and mode have a collection of electronic circuits specific for that instruction. The
65C02 has 212 operation codes which implement 69 instructions. A modern Intel X86 64-bit
microprocessor could have over 3600 operation codes and implement over 980 instructions.

CHAPTER 1 – THE COMMANDER X16 22

Modern microprocessors are incredibly complex. However, with some time and study,
anyone can understand a 65C02 CPU.

The 65C02 has the following features:

• 8-bit data bus

• 16-bit address bus (supplying the address space of 64 KB)

• 8-bit arithmetic logic unit

• 8-bit processor registers

• Accumulator

• Stack pointer

• Index registers

• X register

• Y register

• Status registers

• 16-bit program counter

• 69 instructions implemented by 212 operation codes

• 16 addressing modes, including zero page addressing

How much memory does the X16 have?
There are two types of memory in the X16. Volatile and non-volatile. Volatile memory can
only store information when there is power. When it loses power, it loses everything stored
in it. Non-volatile memory can keep its contents without power. The X16 has non-volatile
memory that is read-only memory called ROM. It also has volatile random-access memory
called RAM.

The ROM in the X16 is 64KB in size, which is 64 x 1024 bits, or 65536 bits. **TODO** or is
ROM 128KB? The X16 only views 16KB of this ROM at any one time. Currently, about half of
the ROM is used to control the computer providing the KERNAL software and BASIC
interpreter. The ROM is permanent unless you have extra electronic hardware to write a
new ROM chip. The RAM memory is used by us to load and run programs.

Computer memory is made up of memory locations. Each memory location has an address.
Each address is a single byte, 8 bits of storage. A bit is the smallest unit of storage, it
represents a 1 or a 0. The bit is either on or off. In the X16 memory is arranged into pages.
The memory addresses $0000 to $00FF, which has a total of 256 bytes, is page 0. Page 1 is
memory address $0100 to $01FF, and so on up to $FF00-$FFFF for Page 255. The CPU in the
X16, the 65C02 has a 16-bit address bus which means it can access up to 64kB, 65536 bytes
of memory.

The X16 has a total maximum of 2MB of RAM memory, which is 2048KB. Some models have
512KB of RAM memory. The 64KB of memory is available all the time, but there is an 8 KB
part of memory that can be swapped or banked out. This trick allows a programmer access

CHAPTER 1 – THE COMMANDER X16 23

to the remaining 448KB-1992KB. How the Commander X16 memory is mapped out will be
discussed in a later chapter.

Memory and storage
The memory hierarchy pyramid helps explain how memory and storage are separated and
related. The different layers in the pyramid show how the response time, cost, capacity is
related.

TODO compare modern computer memory registers/cache L0-4/RAM//Virtual
memory/SDD storage /HDD Disk storage/network storage/Tape storage/offline. Vs Registers
/ RAM/ ROM/SD storage
**REF Wikipedia / Write Great Code Vol1

Storage
The X16 has a modern industry-standard SD flash card reader built-in as well as a
Commodore serial IEEE-488 (IEC BUS) connector. The SD card must be formatted **TODO**

TODO The SD card reader can allow a transfer speed up to 50 MB/s or 400,000,000
bit/s, far more than what the processor can handle.

If you would like a more retro experience the Commodore IEC bus connector allows you to
connect a vintage Commodore floppy disk drive to the Commander X16. In theory, the IEC
connector can allow up to 50,000 bit/s transfer. Significantly slower than the modern SD
card reader.

TODO check compatible 1541 / 1541-2 / etc

Keyboard
The Commander X16 comes with a custom PS/2 keyboard with PETSCII characters printed
on the top of the keyboard. PS/2 is an industry standard originally created by IBM and
released in 1987. The Commander X16 can work with any PS/2 keyboard.

What accessories are needed for the Commander X16?
You can do a lot on the Commander X16 with any modern TV or LCD monitor which has a
VGA connection. When you start to write programs, you will want to save them, so you do
not need to re-type them each time you want to run them. To save them you will need an
SD card, a 4MB or larger will be suitable.

CHAPTER 1 – THE COMMANDER X16 24

Exercise - Hardware Components

 1. Match the word to the phrase
a. CPU. Is removable media
b. SD Card. Stores a program
c. Keyboard. Is an 8-bit processor
d. Memory. Executes a program in memory
e. 65C02. Allows a user to type commands

2. Fill in the blanks.
a. CPU stands for ______ Processor ____.
b. RAM stands for ______ ______ Memory.
c. The CPU can ____ and _____ to RAM.
d. ROM stands for ____ ____ ______.

3. True or False
a.

Exercise 1 - Hardware Components

The Software

BASIC
The Commander X16 is using a version of BASIC based on the classic Commodore BASIC V2.
The operating system is called the KERNAL and is based on the Commodore 64 KERNAL, with
significant improvements and new functions. With ROM banking it is possible for the X16 to
have different operating systems.

KERNAL
The KERNAL is the operating system for the computer, and it is stored in ROM. The KERNAL
manages the computer and its standard features. It has the software which controls the
40/80-character screen, the keyboard, the mouse, the joypad, the clock, RS-232 serial port
and IEC port. It also supplies simple memory management.

Text Graphics
The text display of the Commander X16 which appears when you turn on the computer is 60
lines with 80 characters on each line. It is possible to select different screen modes allowing
for 30 lines with 40 characters. There is a screen setting that is like the Commodore 64
which gives 25 lines with 40 characters on each line. The X16 supplies two-character sets.
The first set supplies all upper-case letters and graphic characters as well. The second set
supplies upper-case and lower-case letters. These characters are based on PETSCII, the PET
Standard Code of Information Interchange. Using these characters creatively it is possible to
create reasonable graphics without using more advanced features.

CHAPTER 1 – THE COMMANDER X16 25

Bitmap Graphics
Bitmap graphics allows each dot, or pixel, to be controlled. The X16 has several different
graphic modes.
TODO
640x480, 320x240, 320x200, number of colours in mode, palette, layers, etc.

Sprite Graphics
The VERA graphics system in the X16 excels with sprites. Sprites are special graphic objects
which can be moved around the screen independently. There can be up to 128 sprites. Each
sprite has a width and height, and these can be any combination of four values: 8,16,32,64
pixels. Sprites can be one of two colour modes, 4 bits per pixel (bpp) (16 distinct colours) or
8 bpp (256 different colours). **CHECK** Up to ??? sprites can be displayed on any
horizontal line. Each sprite has a pointer that points to a location in memory with the
graphical data. The graphic appearance of the sprite. It is possible to change this pointer to a
new location. By doing this it is easy to create animation. There are settings to flip the sprite
vertically, horizontally or both quickly and easily. Also, it is possible to set if a sprite moves in
front of or behind other screen graphics. With these options, sprites on the X16 are
extremely flexible.

Music and Sound
TODO

Connectivity
To round out the feature set the Commander X16 has 4 **CHECK** expansion slots. The
VERA video card has an SD card slot. On the mainboard, there is a PS2 keyboard/mouse
connector, a 6 pin IEC connector as well as a 3.5mm audio jack. There are two W65C22
Complex Interface Adapter (CIA) microprocessors on the mainboard. The CIA chips are used
for the keyboard, IEC connector and expansion slots.

The W65C22 CIA microprocessors are made by Western Design Center the same
manufacturer as the CPU and are fully compatible with the 65C02 CPU. These chips each
have two 8-bit bi-directional peripheral I/O ports, two 16-bit programmable interval
timer/counters as well. Versatility is increased with the inclusion of various control registers,
interrupt flag register, interrupt enable register and two function control registers.

How to program the X16?
This book will teach you the fundamentals of programming the X16 using the BASIC
programming language. BASIC is easier to read and understand than machine code or
assembly. Below is an example of a BASIC program on the X16.

10 LET X=1
20 PRINT "THE X16 IS THE BEST! TIMES"X
30 LET X=X+1
40 GOTO 20

Listing 1 - Example of a BASIC program

CHAPTER 1 – THE COMMANDER X16 26

Learning how to use the Commander X16
The best way to learn how to use the Commander X16 is to start using it. Use the guide that
came with the X16 and become familiar with typing commands. You cannot damage the
computer by playing around on the keyboard. Once you feel familiar with the X16 it is time
to start reading this book in earnest.

Emulator

While the Commander X16 was being developed there needed to be a way for programmers
to gain experience on the platform and for the community to get involved. The developers
created the X16 emulator, which is available from www.commanderx16.com. The X16
emulator allows Commander X16 software to be run on Windows, Linux and macOS.

Setup X16 emulator on Windows

Setup X16 emulator on Linux

Setup X16 emulator on macOS
The Commander X16 emulator can be downloaded from.
https://www.commanderx16.com/forum/index.php?/files/file/25-commander-x16-
emulator-
winmaclinux/&do=download&r=405&confirm=1&t=1&csrfKey=df160969460fb8d40b63549
bfaad4f41

The zip file will be downloaded to your download folder and macOS will unzip the file.

Figure 1 - X16 r38 emulator downloaded on macOS

The folder can be expanded, and you should see the x16emu executable file.

CHAPTER 1 – THE COMMANDER X16 27

Figure 2 - X16 r38 emulator executable

Newer versions of macOS have a security feature which requires software be digital signed.
A pop up will appear letting you know the x16emu software is not signed and cannot be
opened.

Figure 3 - macOS unable to verify X16 emulator

To run this software, you will need to open the system preferences and go to the “Security
& Privacy” control panel.

CHAPTER 1 – THE COMMANDER X16 28

Figure 4 - macOS System Preferences

When you open the “Security & Privacy” control panel you should see a message like the
image below. Click on the “Open Anyway”

Figure 5 - macOS blocked app

Click on the “Open Anyway” button. Another pop-up will appear which is the final warning,
click on the “Open” button to start the X16 emulator.

Figure 6 - macOS final enable X16 emulator

The Commander X16 emulator will then open a terminal window and the emulator will
start.

CHAPTER 1 – THE COMMANDER X16 29

Figure 7 - X16 r38 emulator running on macOS

Software Development Environment

Programming on the X16
TODO

Cross-Platform Development
TODO setting up development tools on Windows / Mac and using emulator/hardware

Further Reading
The Century Computer Programming Course for the Commodore C64 [2]
Compute!’s First Book of Commodore 64 [3]
Programming the 6502 [4]
W65C02S 8-bit Microprocessor [5]
The 65C02 Microprocessor
Wikipedia – PETSCII

X86 Opcode and Instruction Reference [6]

CHAPTER 2 – FIRST STEPS 30

Chapter 2 – First Steps

"The first step is you have to say that you can." - Will Smith

What is Programming?

Today we are surrounded by the results of programming. When you use your computer, use
your phone, respond to a social media post on a website, even look at your watch, or read
this book on a tablet. People had to create programs on these devices to perform tasks.

But what is programming? Programming is the process of converting an idea into a
sequence of instructions or code that a computer can execute. These instructions are
specific, and the computer will execute the commands precisely as we arranged them. The
sequence is the program. Sometimes the program creates undesired outcomes; these are
bugs. Bugs can cause minor problems or crashes. If we make a program with bugs, it is
because we misunderstood the problem or the correct use of the instructions. Programming
is as much about finding and preventing bugs as it is about converting ideas into cool
programs.

For us, programming is problem-solving using two fancy tools, the X16 and our brain.
Solving any problem requires three steps.

1. Define the goal. Clearly identify the problem
2. What resources are available
3. Apply resources to reach the goal

The big trick is you must produce a solution for a given problem. In programming, this
solution is referred to as an algorithm and it is a step-by-step method. The process of
creating this algorithm is called structured programming. This involved breaking the
problem up into smaller and smaller sub-tasks. This process will be covered in much more
detail in chapter 6. The algorithm can be expressed in any language.
Consider the below example.

1. Remove Commander X16 from the box
2. Remove the power cable from the box
3. Plug the power cable into the wall outlet
4. Plug the power cable into Commander X16
5. Turn on Commander X16
6. Have fun

The above algorithm is simple for a human to follow. Unfortunately, 8-bit computers are
unable to understand or run ordinary written English. The computer can only “understand”
a well-defined subset of language. There are several programming languages available for

CHAPTER 2 – FIRST STEPS 31

the X16. Converting an algorithm into a particular programming language is called
programming or coding.

Efficient programming includes the extensive usage of all computing tools including internal
registers, memory storage, external equipment, as well as the use of suitable data
structures.

Programming also requires a strict discipline of documentation to enable the program to be
understood by others and by the author. Internal and external documents must be provided
for the software. Internal documentation refers to comments or remark statements made in
the body of a program that describes the process. You should make sure there are no
“magic boxes”. Magic boxes are those processes, or pieces of software where things happen
but no one really understands. This is not necessarily a problem, however, when the magic
stops, it can make troubleshooting and fix very difficult.

“Any code of your own that you haven’t looked at for six or more months
might as well have been written by someone else.” Eagleson’s Law

What is a Programming Language?
Computers understand their processor instruction set or machine code. A computers
instruction set is unique to the type of computer processor. When you want to program
instructions into a computer, you use a programming language. There are hundreds of
different programming languages. Each language has its syntax, rules, and keywords with
specific meanings. Some languages are only available on certain devices. The program you
create with a language then gets converted into the computer’s instruction set, or machine
code so that it can be executed. Programming languages can be high level, low level or the
grey level in-between.

A high-level language is closer to a human language like English. A high-level language will
provide abstraction. The goal of abstraction is to hide the intricate details of something to
make it easier to understand and use. Typically, a high-level language does not deal with
memory management. High-level languages need a compiler to convert the high-level
language into machine code that the computer can execute.

The lowest level of language is machine code. Low-level languages typically do not look like
human language at all. Machine code is unreadable to all but experts since it is merely a
stream of binary numbers. Low-level languages do not provide abstraction and typically
require the user to manage memory. The primary low-level language is assembly. It offers
human-readable mnemonics and hexadecimal numbers to represent the program. The code
is then assembled into machine code.

The Commander X16 has a few languages available. Assembly is available for the
Commander X16. The programming language C is also available, and it is often considered a
grey level language as it provides abstraction but requires memory management. The high-
level language we will be using in this book is BASIC. The primary reason we will use BASIC is

CHAPTER 2 – FIRST STEPS 32

it comes standard on the Commander X16. No tools are needed to start programming it.
The Commander X16 has a BASIC interpreter which will allow our programs to execute.

Machine Code, and Assembly
These binary values stored in memory can then be read by the CPU to perform work. The
computer CPU can interpret these values to perform many different functions. This is
machine code.

%1010 1001 1100 0000 1010 1010 1110 1000 0110 1001 1100 0100 0000 0000

This does not look easy to read or understand for a person! To make machine code easier
for a person to work with we have another number system called hexadecimal which is base
16. Hexadecimal numbers have a $ prefix. When we convert the binary stream into
hexadecimal it looks like

$a9 c0 aa e8 69 c4 00

This still does not look easy to read or understand for a person! To make machine code
easier to read and program the code representing CPU functions or opcodes were given
mnemonics. Code written with these mnemonics would then be loaded into an assembler
which could convert it into machine code. This language was then known as assembly
language. Assembly language is specific to the type or family of CPU. Assembly language on
the 6502 families of CPU is different from the x86 or ARM family of CPU. Below is an
example of a very short machine code/assembly language program loaded into the X16
memory address $0800

0800: a9 c0 aa e8 69 c4 00

LDA $c0 ; Load hex value $c0 into A register
TAX ; transfer the value in A register to X
INX ; increment the value in the x register
ADC $c4 ; add the hex value $c4 to A register
BRK ; we are done
TODO What is this translated into BASIC and C?

Memory TODO
Memory stores everything – 64k of low memory, 512kb of high memory, a byte is 8 bits. Discuss bits and
binary. Discuss bits vs bytes and kb. Discuss binary vs decimal and hexadecimal.

CHAPTER 2 – FIRST STEPS 33

What is BASIC
BASIC was designed initially in Dartmouth College by John G Kemeny and Thomas E Kurtz, in
1964. BASIC is an acronym that stands for Beginners All-purpose Symbolic Instruction Code.
At the time computers required software to be written to do anything. This was a task often
done by mathematicians and early computer scientists. The authors of BASIC wanted
students at any school of study to be able to access and use computers. The main
philosophy of BASIC is the ease of use. With computers becoming more popular in the late
1970s, Microsoft developed Microsoft BASIC 1975. Commodore licensed Microsoft BASIC
for use on their range of computers starting in 1977. The Commodore 64 came with
Commodore BASIC v2.0. The Commander X16 is using a version of BASIC which is mostly
compatible with Commodore BASIC 2.0.

Commodore released seven versions of Commodore BASIC. There were almost 30 different
variants of Microsoft BASIC. Also, at the time, there were complete other families of BASIC
from Atari, BBC etc. We will focus on the Commander X16 BASIC V2 which incorporates all
the features of version 2 with some extra commands and features.

Fundamentally BASIC is a kind of translator between your words and the instructions that
the computer can understand. Once you know what you want the computer to do, it is
simple to create BASIC instructions for it to follow. By following the standards of the
language, the computer deciphers your program and carries out those instructions.

Reasons to learn BASIC.

There are a few good reasons to learn BASIC. The main reason is that learning how to
programs helps you get more out of your Commander X16. You will be able to modify
existing programs to suit your needs better. It is a steppingstone to more advanced
programming languages.

Computers play a massive role in our society today. They are in every electrical consumer
device we use, from building air conditioning management systems to our doorbells and our
children’s toys. Knowing how they work will make adapting to our changing world easier for
you. You are furthering your education by learning about computers, and you will have an
advantage over those people who are not keeping up with progress.

In the end, computers can be fun. Your Commander X16 is a great entertainment machine,
with fast action, colour display with excellent resolution (for a modern retro 8-bit
computer), and music. However, if you stop and think about it, every time you play a game,
you are enjoying the product of someone else’s imagination. A computer can perform math
calculations, display colourful images, and produce sounds. But to transform these
computational operations into an entertaining game, a person with original thinking is
essential. The computer is lacking in imagination. That imagination can come from a
professional game programmer, or it can come from you. By learning to program, you can
turn your thoughts and ideas into reality in ways that are not possible before. This computer
enables you to express your creativity.

CHAPTER 2 – FIRST STEPS 34

Interacting with the X16

Unlike modern computers, which use a mouse or a touch screen, most of your interaction
with the X16 will require the use of a keyboard. When you turn on the Commander X16, a
message is displayed in letters and numbers to welcome you. These and other symbols
which the machine can display are called characters. You will also see a square that flashes,
known as the cursor. By typing into the keyboard, you can put your characters on the
screen.

The corresponding character appears on the screen, at the cursor's location, each time you
press a key. Afterwards, the cursor travels one spot to the right. To type in the punctuation
characters shown on the digit keys above the numbers, hold down one of the SHIFT keys
while typing the digit keys. Using SHIFT with letter key triggers characters in the graphics.

You will have one screen row filled out after you type 80 characters. When the cursor moves
off the screen's right edge, it will reappear at the left side, one row lower. That is called
wrap-around. Typically, you only type a few characters on a line, then click the RETURN key.
Pressing the RETURN key makes the cursor move back to the screen's left edge, one row
lower once again.

When you press RETURN without typing any characters, it merely moves one row
downwards. Do this as many times as you can, and the entire display will move upwards.
This is called scrolling, and the horizontal wrap-around is the vertical counterpart. The
screen scrolls up. The characters that scroll off the screen cannot be retrieved.

If you type something and then you press RETURN, the computer displays the message
"?SYNTAX ERROR", do not worry about it at this point. Syntax refers to BASIC-language
grammar. When you type something that does not belong in the language, the computer
displays this error message.
You can get some additional graphics characters by holding down the Commander key while
entering the letter keys. Entering a digit key while holding down the Commander key will
change the colour of the cursor. Now all typing is in the new colour. Keep down the key
labelled CTRL when typing a digit key to get more colours.

Some keys do not put characters on the screen. Instead, they are making the cursor move.
The four cursor keys can move the cursor in all four directions, the space bar key creates a
space, etc.

Numbers

Decimal
We learn to count on our hands, and we use the numbers 0 to 9. We use decimal which has
10 different symbols to represent numbers, this is base 10. We learned at a young age that
the position of the numbers represents a different power of 10 values. E.g., How many 1s,
how many 10s, how many 100s. Decimal is a positional number system.

103 (1000) 102 (100) 101 (10) 1 Notes
1 0 2 4 The number 1024 has 1 x 1000 + 0 x 100 + 2 x 10 + 4 x 1.

CHAPTER 2 – FIRST STEPS 35

0 0 1 6 The number 16, has 0 x 1000 + 0 x 100 + 1 x 10 + 6 x 1
Table 2 – Example of Decimal numbers

Binary
Most modern computers are binary computers and contain many electronic circuits and
transistors. All these components can be in one of two states. High power or low power.
‘On’ or ‘off’. True or false. Everything that happens in the computer is based on the
possibilities of the components being in those states. True or False, 1 or 0, Binary. With
binary, there are two numbers, so it is base 2. The position of the number represents
different values than what we are used to. The position represents a different power of 2
values.

27 (128) 26 (64) 25 (32) 24 (16) 23 (8) 22 (4) 21 (2) 1 Notes
0 0 0 1 0 0 0 0 The number is 16. We see there is 0 x 128

+ 0 x 64 + 0 x 32 + 1 x 16 + 0 x 8 + 0 x 4 + 0
x 2 + 0 x 1

1 1 1 0 0 1 1 0 The number is 230. We see there is 1 x 128
+ 1 x 64 + 1 x 32 + 0 x 16 + 0 x 8 + 1 x 4 + 1
x 2 + 0 x 1.

Table 3 – Example of Binary numbers

When we look at a small part of the computer’s memory, we have 8 transistors. We can
describe the state of those electronic components with numbers. Each of the transistor
circuits or “bits” are ‘on’ and some are ‘off’. E.g., 11100110. That looks like a number, and it
is. It looks like a decimal number but in this case, it is a binary number. To prevent confusion
in this book binary numbers will have a % prefix.

Converting decimal to binary is simply a matter of subtraction. We simply see if we can
subtract the binary representative values from our decimal number. Consider the decimal
number 175. If we subtracted the binary value of 256 it would give us a negative, so that
does not work. But we can subtract 128 from 175 and that leaves us 47. The value 64 is too
large, but we can subtract 32. 16 is too large but we can subtract 8 leaving 7. We can see
from here we can subtract 4,2 and 1 leaving us zero. We can now see the binary number
%10101111.

27 (128) 26 (64) 25 (32) 24 (16) 23 (8) 22 (4) 21 (2) 1 Notes
1 0 0 0 0 0 0 0 175 – 128 = 47. We place a 1 under 128.
1 0 1 0 0 0 0 0 47 – 32 = 15
1 0 1 0 1 15 – 8 = 7
1 0 1 0 1 1 1 1 7 – 4 – 2 – 1 = 0

Table 4 – Convert decimal to binary

Hexadecimal
Often when working with computers we use hexadecimal numbers. Hexadecimal numbers
are base 16. Hexadecimal uses the symbols 0 to 9 like decimal, then it uses A to F from the
alphabet to represent values 10 to 15. To prevent confusion in this book hexadecimal
numbers will have a $ prefix. Often in other texts, you will also see the prefix of 0x.
Hexadecimal is also a position value system.

163 (4096) 162 (256) 161 (16) 1 Notes

CHAPTER 2 – FIRST STEPS 36

0 0 1 6 The number $16 has the value of 1 x 16 + 6 x 1 = 22
0 A C E The number $ACE has the value of A (10) x 256 + C (12) x 16 + E (14) x 1 =

2766
Table 5 – Example of Hexadecimal numbers

Nowadays it is easy to open a calculator app and use programming mode which offers an
easy way to convert decimal to hexadecimal to binary. However, it can be useful to
understand how to convert manually. Consider that hexadecimal base 16 and first 4 value
positions in binary. The below example will convert a decimal number to binary and then to
hexadecimal.

Consider the decimal number 213. To convert to binary, we look at the represented values
of binary. 256 is greater than 213. However, 128 can be subtracted from 213 and leaves 85.
We can subtract 64 and it leaves 21. We cannot subtract 32, but we can subtract 16 leaving
5. We can then subtract 4 which leaves 1. We see this gives us the binary number of
%11010101. Now to convert to hexadecimal we focus on the first 4 values, $0101. This has a
value of 5, which is our first hexadecimal number. We then look at the next 4 values, %1101,
but we consider them to represent values of 1,2,4 and 8. This part then represents a value
of 13, which is $D. Converting 213 to hexadecimal value $D5. We can convert binary to
hexadecimal very easily now that we understand each hexadecimal number represents 4-
bits of the binary number.

27 (128) 26 (64) 25 (32) 24 (16) 23 (8) 22 (4) 21 (2) 1 Notes
1 1 0 1 0 1 0 1 Decimal 213 converted to %11010101
 23 (8) 22 (4) 21 (2) 1
 0 1 0 1 These 4-bits have a value of 5. Our first

hexadecimal number is 5.
 5

23 (8) 22 (4) 21 (2) 1 We then look at the next 4-bits, however
we consider them to have values of 1,2,4
and 8.

1 1 0 1 These 4-bit have a value of 13. Our next
hexadecimal number is D.

D 5 213 converted to hexadecimal is $D5
Table 6 – Convert Decimal to Binary to Hexadecimal

Octal
Another numeral system seen with computers is Octal, which is base 8. It uses the digits 0 to
7 just like decimal. This system was used before computers by several different cultures who
counted on the spaces between fingers. It was also seen as a handy system for dividing
items into halves and quarters. The system became more widely used in computer science
with the early mainframes which used 6-bit, 12-bit, 24-bit and 36-bit words. The use faded
away when 8-bit and 16-bit computing became the norm. To prevent confusion octal
numbers in this book will have a & prefix. In other texts, you may also see the prefix 0o
(Zero, small letter o)

Octal has a close relationship with binary like hexadecimal. We can convert binary to Octal
easily when we consider that each octal number represent 3-bit of the binary number.
While we will not use Octal in this book it is still handy to be aware of. It is still used today in
some programming languages.

CHAPTER 2 – FIRST STEPS 37

28
(256)

27
(128)

26 (64) 25 (32) 24 (16) 23 (8) 22 (4) 21 (2) 1 Notes

0 1 1 0 1 0 1 0 1 Decimal 213 converted to %11010101
 22 (4) 21 (2) 1
 1 0 1 These 3-bits have the value of 5. The

first octal number is 5.
 5
 22 (4) 21 (2) 1
 0 1 0 These 3-bits have the value of 2. The

second octal number is 2
 2

22 (4) 21 (2) 1
0 1 1 These 3-bits have the value of 3. The

third octal number is 3.
3
 2 5 213 converted to octal is &325

Table 7 – Convert Decimal to Binary to Octal

Summary - Numbers

 • Humans normally use Decimal

• Decimal has ten digits. The digit position in the number

represents a value power of ten

• Computers normally use Binary

• Binary has two digits. The digit position in the number

represents a different value of the power of two.

• Octal has eight digits.

• Hexadecimal is particularly useful for converting between

binary and decimal

• Hexadecimal has sixteen digits.

CHAPTER 2 – FIRST STEPS 38

Exercise - Numbers

 4. Convert the following binary numbers to hexadecimal, then to
decimal.

a. 0011 1101
b. 0110 1011
c. 0010 0101
d. 0110 1110
e. 1110 0100

 5. Convert the following decimal numbers to hexadecimal, then
to binary.

a. 16
b. 100
c. 7
d. 229
e. 131

Exercise 2 - Numbers

Bits, Bytes and Words

Bit
A ‘Bit’ is the smallest unit of storage, it represents a 1 or a 0. We know that this is a binary
value.

Byte
Early computers typically used 8-bits to encode a text character. The term ‘Byte’ was coined
and represented 8-bits. A byte being equal to 8-bits was not always the case, in the 1960s
there were computers that had 6-bit or even 9-bit bytes. However, a byte being 8-bits
became the de facto standard partly because it is a convenient power of two. As a result,
the majority of computing architectures use 8-bit bytes. The symbol used to represent a
byte is an upper-case B. With 8 bits in binary it is possible to represent the values from zero
to 255, or 256 different numbers. The value of a byte is often written as a decimal number
(from 0 to 255) or as a hexadecimal number (from $00 to $FF).

Nibble
When you only take half a bite of a sandwich, you have had a nibble. When you only access
4 bits or half a byte, you are working on a nibble. A byte is made of a low nibble and a high
nibble. The low nibble is the 4 least significant bits. The high nibble is the 4 most significant
bits.

CHAPTER 2 – FIRST STEPS 39

kB vs KiB?
During the 70s as computers storage and memory increased the industry added the metric
term of kilo (meaning 1000) to Byte to represent 1024 bytes since 1000 is close to the binary
1024. Then there was some interesting marketing. Companies could release a device that
could store 256,256 bytes and it would be advertised as 256 kB. While another vendor
would have a device advertised as 256 kB and it held 262,144 bytes. To solve this issue in
the late 90s updated terms were created by the IEC: kibibyte, mebibyte, gibibyte.

Value Metric Value IEC
1,000 Bytes 1 kilobyte = 1 kB 1,024 Bytes 1 kibibyte = 1 KiB
1,000,000 Bytes 1 megabyte = 1 MB 1,048,576 Bytes 1 mebibyte = 1 MiB
1,000,000,000 Bytes 1 gigabyte = 1 GB 1,073,741,824 Bytes 1 gibibyte = 1 GiB

Table 8 – Metric vs IEC multiple-byte units

Word
When reading about bit and bytes you may also see the term ‘Word.’ A word represents a
certain number of bits, and it is dependent on the computer architecture. A word is a fixed
size piece of data used by the CPU. Typically, it is the size of the largest piece of data that
can be stored in the CPUs (Central Processing Unit) internal registers.

As computers became more powerful, going from 16-bit to 32-bit and then 64-bit, the
hardware developers wanted to maintain backwards compatibility. The concept of
doublewords and quadwords were created. A word was kept at 16-bit and a doubleword
was 32-bit and a quadword was 64-bit. The value of a word is often written as a decimal or
hexadecimal based on how the value is going to be used. E.g., When dealing with a word
that contains a memory address is it common to use hexadecimal.

Term Bits Hexadecimal range Number of values
Word 16-

bits
$0000 - $FFFF 65,535

Doubleword 32-
bits

$0000 0000 - $FFFF FFFF 4,294,967,295

Quadword 64-
bits

$0000 0000 0000 0000 - $FFFF FFFF
FFFF FFFF

281,474,976,710,655

The CPU used in the X16 is, for the most part, an 8-bit computer. Because the internal
registers are 8-bit technically the word size is 8-bit. However, it does have a 16-bit address
bus and a 16-bit program counter. So, the term ‘Word’ may be used to describe a memory
address or a piece of data in the program counter register. Often when dealing with an 8-bit
word it is just easier to refer to the data as a byte.

Endianness

When we read this sentence, we read from left to right. It is a convention for many of us as
English is written in lines starting on the left moving to right, progressing from top to
bottom. But consider other written languages. Arabic script is written from right to left, top

CHAPTER 2 – FIRST STEPS 40

to bottom. Japanese kanji is written in columns from top to bottom, then left to right.
People have diverse ways to read and write text.

Computers, as it turns out can store and read data in different ways as well. How it does
stores numbers is based on its CPU. When a computer stores a byte, it stores it the way we
think it should, from largest value bit to smallest. The value 255, $FF, would be stored in
memory as %11111111. The value 16, $10, would be stored in memory as %00010000.

But when dealing with a word that has two bytes, which byte should be written first?
Consider the value 65,000. The hexadecimal value is $FDE8 and it is made of two bytes.
Which byte should be written first? Should $FD, being the most significant part of the
number be written first in a lower memory location? Or should it be written in a higher
memory location? The byte $E8 is the least significant part of the number. But where is the
least significant or ‘end’ of the number going to be stored?

Endianness is simply the order in which bytes in a word are sorted. Big-endian store the
most significant byte first in the lower memory address. Little-endian store the least
significant byte first in the lower memory address. Most modern computers with CPUs from
Intel and AMD are Big-endian. The X16 with the 65C02 CPU is a little-endian system.

Variables

Programming involves handling and processing information and data. When we make a
game, we need to track many pieces of data, like the player’s score, how many lives they
have, the player's location on screen etc. A variable is simply a container that stores a value.
When we create a variable, the computer allocates part of its memory to store it. A variable
is a symbol used to represent a piece of data. A variable's value can change based on what
operations the program does to it. The contents of the variable’s container are variable.

Data Types
When we create a variable, it is important to tell the computer what type of data will be
stored. Distinct types of data require different amounts of memory and allow different
types of operations. Adding two numbers together is different from adding two strings
together. In modern programming, there are many different types of data. Some common
types are listed in the below table.

Table 9 - Common Data Types

Integer (int) The most basic type of number data. It is used to store integer
numbers, numbers without a fraction component. E.g., 16 or 2021.

Floating Point
(float)

This is also a type of number data. A floating-point number has a
fractional component. E.g., 128.5 or 3.14159265

Character (char) Used to store a single letter, symbol, digit.
String (str) A string is a sequence of characters. Normally it is used to store text.

A string can contain numbers; however, it will be treated as text.
Boolean (bool) A simple type that can only hold one of two values, true or false

CHAPTER 2 – FIRST STEPS 41

Enumerated type
(enum)

Contains a set of predefined values. The values can be text or
numerical and are known as elements. Typically, values can be stored
and retrieved using a number index.

Array Also known as a list. Array’s stores a number of elements, normally of
the same type of data. E.g., an array of strings. Each element in the
array is accessed using an integer index (0,1,2…n). The total number
of elements is the size of the array.

Date Most languages will store a date in YYY-MM-DD, ISO 8601 format.
Time Some languages can store time in a HH:MM: SS format.

There are also four other terms relating to data types; Strongly typed, weakly typed,
statically typed, dynamically typed. These four terms all relate to how strict a programming
language is about data typing. The concept is not new, people have been writing about
these concepts since 1974. Strongly typed has been defined as "Strong type checking means
that whenever an object is passed from a calling function to a called function, its type must
be compatible with the type declared in the called function."[7] A weakly typed language
makes conversion between unrelated data types when required. Statically typed means the
language will check the data type rules at compile time. Dynamically typed means the
language will check the data type rules as it is running. BASIC is not compiled so it is not a
statically typed language. These concepts are not hard and fast. In fact, they are often
presented as a graph.

Figure 8 - Classification of data typing

In other words, some programming languages require that you define the exact variable
type when you create it, and the type of data cannot be changed. These are languages are
strongly typed. Other languages can be weakly typed, and you can create a variable and
store any type of data you want in it. Some languages are stricter or more relaxed than
others.

BASIC Data Types
BASIC only understands a few different types of variable data. BASIC can work with strings
of text, integer numbers, float numbers and arrays. BASIC does impose limits on how large a
variable can be based on the type. A string can contain up to 255 characters. An integer is
any whole number between -32768 and + 32767. Float numbers can be very large between

CHAPTER 2 – FIRST STEPS 42

+- 2.93873588E-39 and +-1.70141183E38. 1.70141183E38 is written as a standard number.
To write it out for a non-programmer to see it would look like;
170,141,183,000,000,000,000,000,000,000,000,000. Needless to say, but floats can be very
large numbers. Array are lists of data. When an array is created its size and the data type it
will hold are declared.

Table 10 - BASIC Data Types

Integer (int) Any whole number between -32768 and + 32767.
Floating Point
(float)

Very large numbers between +- 2.93873588E-39 and +-
1.70141183E38.

String String can contain up to 255 characters.
Array Can store a single type of data, Integer, Float or string.

Variable Rules
With any language, there are rules about variables. In BASIC the names of variables must
follow the below rules.

• The first character must be alphabetic. (Range A-Z)

• The 2nd character may be alphanumeric. (Range A-Z and 0-9)

• Any more alphanumeric characters are allowed but are not considered

part of the variable name

• The 2nd or 3rd character can be % to represent an integer or $ to

represent a string variable

• The 2nd or 3rd character can be (to represent a subscripted variable

• A name cannot include reserved words since the BASIC interpreter will

treat them as keywords.

BASIC can-do automatic conversion between different types of numeric variables. However,
converting a string to a number and vs versa requires a function.

From the rules we see variables can have suffixes to distinguish what type of variable they
hold. % for integer data or $ for string datae. A numeric variable has no suffix and can hold
many values. E.g., A variable for Players Gold, PG holds a value of 123456789.1234
An integer variable has the suffix of % sign. An integer variable can only hold whole
numbers, no decimal places. They use less memory in the computer. E.g., PL% or S7%
holding a value of 32000. A string variable is used to store ‘strings’ of letters or numbers.
This is the variable type used for handling text. It has the suffix $ sign. E.g., A variable, string
1, as S1$ holding a value of “Ready Player One”

It is worth noting that naming variables in a meaningful way is considered difficult with
modern languages. Typically, you try to create short, descriptive names which make the
code easier to understand. With BASIC this is not possible. I recommend creating variables
at the beginning of the program and describing them with a REM statement. A detailed

CHAPTER 2 – FIRST STEPS 43

comment about what the variable is for and how it is used. This will take up more space,
however, while the software is being developed it is very useful.

Before, We see a list of variables where we may guess what they are used for.

10 X=100; A=200; L=3; W$="WELCOME"; PN$="COMMANDER JAMESON"

Listing 2 – Example of variables

After We see a list of variables with some description, so we know exactly what the
variables are for.

10 LET X=100: REM PLAYER CURRENT X ORDINATE
15 LET A=200: REM PLAYER CURRENT AMMO
20 LET L=3: REM PLAYER LIVES REMAINING
25 LET W$="WELCOME": REM MESSAGE TO DISPLAY
30 LET PN$="COMMANDER JAMESON": REM THE PLAYERS NAME

Listing 3 – Example of variables with description

Constants

A constant is similar to a variable. However, the value is set at the beginning of the program
and remains constant. They are often used for testing or setting boundaries. An example
from a game could be the constant max bullets, LET MB=10 so before that spaceship fires
another bullet it checks to see how many bullets are flying around and makes sure it is less
than MB before creating another one.
There are also integer constants. Integer constants are whole numbers (numbers without
decimal points) Integer constants must be between -32768 and 32767. Integer constants do
not have decimal points or commas between the numbers. If the minus (-) sign is left out,
the constant is assumed to be a positive number. Zeros coming before a constant are
ignored and should not be used as they will use memory.

Do not use a comma in a number.

LET X = 32,767

?SYNTAX ERROR
READY.

Virtual screen 1 - Syntax Error with LET

Using a comma will create a ?SYNTAX ERROR, as seen in the above example. Without the
comma it will work.

LET X = 32767

READY.

Virtual screen 2 - Example of LET

The value of an integer cannot be changed. The integer constant 5 has a value of 5.

CHAPTER 2 – FIRST STEPS 44

LET 5 = 2

?SYNTAX ERROR
READY.

Virtual screen 3 - Constants cannot be changed

The above example generates a ?SYNTAX ERROR

True and False

In BASIC on the Commander certain operations will return a True or False. The value of -1
represents True and the value of zero represents False. This is very different than other
programming languages.

To see this behaviour, we can do some basic maths with the PRINT command. We will print
the result of 1 is greater than zero, which is true. We see the value -1 appear. When we
print the result of 1 is smaller than zero, which is false. We see the value zero appear.

READY.
PRINT 1>0
-1

READY.
PRINT 1<0
 0

READY.

Virtual screen 4 - Example of True and False

In BASIC on the X16, the value -1 represents True.

Mathematical Operators and Precedence

The computer supports a number of mathematical operations. The symbols used to indicate
the operation is called an operator. + Addition, - Subtraction, * Multiplication, / Division and
^ Exponentiation. Computers just like people cannot figure out how to divide by zero so if
you try this in BASIC you will get the message “?DIVISION BY ZERO ERROR”

Operators can be mixed on a single line as the below example.

PRINT 2*3+4
 10

READY.

Virtual screen 5 – Multiple operators on single line

However, it is important to remember that certain operators have precedence over others.
Operators which have the same level of precedence are checked in order of left to right.

^ Exponentiation
+ positive number • Negative number

CHAPTER 2 – FIRST STEPS 45

• Multiplication / Division
+ Addition • Subtraction
<= Less than, equal to • Greater than
NOT logical NOT
AND logical AND
OR logical OR

The table lists the three binary operators NOT, AND, and OR which we will discuss later.

Functions

A function is sometimes called a subroutine, method, procedure or subprogram. With BASIC
we will use two terms, function and subroutine. Both are created from lines of code and
serve the same purpose, to save time and space by allowing us to reuse code.

A function is a sequence of programming instructions that perform a specific task and return
a value. This function can then be called whenever that task should be done. A function may
require variables to be given to it to perform the particular task. For an example a function
that when given a number value as a variable will calculate and return the amount of
government tax required.

A subroutine is a sequence of instructions that perform the same task. For an example, clear
the screen of text and display a menu.

In BASIC some functions return a value dependent on the variable given to them. For
example, the numeric function SQR (number) returns the square root of the number passed
to it. The string function LEFT$(“string”,2) will return the left 2 characters from string.

TODO

Expressions

A numeric expression is an arrangement of numbers, number functions, integer and real
variables, operators or logical expressions.
E.g., PRINT 2+3*4
Because multiplication has higher precedence than addition the computer would multiply 3
and 4 and then add 2 giving us the result of 14.

We can change the order of precedence by using parentheses (). Parts of an expression in
parentheses are evaluated first.
E.g., PRINT (2+3)*4
This time the computer will add 2 and 3 then multiply by 4 giving us the result of 20

Numbers
TODO Need to write something about Decimal numbers, vs $ hex, vs % binary

CHAPTER 2 – FIRST STEPS 46

Learn the language

If you are truly interested in programming, then you will end up learning many different
languages over the years and decades to come. But for now, read and understand all of the
BASIC keywords. Create little programs to explore and use them all. Exploring and reading
other books, websites, tutorials on BASIC and other languages will help you. You will expand
your skills and gain different views and ideas on how to accomplish tasks. You may find, like
I have that when returning to BASIC you see new ways of using this old language.

Join the community
There are no programming gurus. A ‘guru’ is someone who analyses problems
systematically. Often, they are people who have spent years learning programming
languages and patterns. It is from this experience they can appear to magically know
solutions. To receive help from these ‘guru’s you need to include your code, explain what
you’ve tried and understand that they are human to. You will not necessarily get answers.
You may work things out yourself when you sit down to explain to others what is happening.
The more you learn and practice the better you will become, moving along the continuum
from ‘newbie’ towards ‘guru’ yourself.

CHAPTER 3 – INTRODUCTION TO BASIC 47

Chapter 3 – Introduction to BASIC

"Programs must be written for people to read, and only incidentally for
machines to execute." - Harold Abelson

Beginning BASIC Statements

Numbers, Operators, Expressions and Precedence.
When you see the prompt READY, it means that the computer is waiting for you to type
something. In the previous section, you always type a line and press RETURN. This means
you type something that your PC cannot understand. A syntax error is a problem. Here is a
line the computer is going to follow. Type this line and press RETURN

PRINT 64 + 16
 80

READY.

Virtual screen 6 – Example of addition

The computer has responded by displaying the answer, 80, on the screen. The computer can
also handle more difficult problems.

PRINT 64 + 16 + 512 + 128 + 4096
 4816

READY.

Virtual screen 7 – Example of multiple additions

Now you see why you need the RETURN key. It allows the computer to know when a line is
complete. It also allows you to fix errors before the X16 interprets the line. From now on, it
means you must type a line into it and press the RETURN key. The computer supports
adding, subtracting, multiplying and division operations. One of these operations is referred
to as an operator as a symbol. The plus sign was used in the examples. Enter these three
lines to view the others

PRINT 64 – 16
 48

READY.
PRINT 16 * 4
 64

READY.
PRINT 512 / 64
 8

READY.

Virtual screen 8 - Example of subtraction, multiplication and division

Since alphabet letters have a particular computer meaning, X or x cannot be used for
multiplication so; instead, the* asterisk is used. For division, the slash symbol is used.
Division by zero, incidentally, is illegal, so if you try to divide the computer by zero, you will
get the Division by Zero error.

CHAPTER 3 – INTRODUCTION TO BASIC 48

There is another operation, which is exponentiation. On the X16 keyboard is the symbol (up
arrow) which is SHIFT + 6. It is not the Up-arrow cursor key on a PC keyboard is it the ^
symbol.

PRINT 2 ^ 4
 16

READY.

Virtual screen 9 – Example of exponentiation

Exponentiation shall be used to increase a number to a power. The line above, as in 2 * 2 * 2
* 2, means multiplying the number 2 by itself four times.

On a single line, operators may be mixed. The result is referred to as an expression. The
computer evaluates an expression to produce a response or value.
2* 3 + 4 When using expressions, it is important to remember those individual operators
have precedence over others. Here is a list showing the operator hierarchy, beginning with
the highest precedence. The operators with the same precedence are assessed in order,
from left to right.
^ exponentiation
*,/ multiplication, division
+,— addition, subtraction

Please enter this line to see precedence in action.

PRINT 2 + 3 * 4
 14

READY.

Virtual screen 10 – Example of precedence

Since multiplication takes precedence over addition, the computer first multiplies 3 and 4,
and then adds 2 to the result. The proper response to this expression is 14.

Using parentheses, you can change the order in which an expression is assessed. Parts of
the expression in parenthesis are always evaluated first.

PRINT (2 + 3) * 4
 20

READY.

Virtual screen 11 – Example of parenthesis

This time, the computer will add 2 and 3, then multiply the result by 4, and display the
answer, 20.

Keywords and statements
Now we should take a moment to notice the organisation of statements. The computer
scans first thing in the line when entering a line and pressing Return to see if the word is

CHAPTER 3 – INTRODUCTION TO BASIC 49

recognised as a statement or command. If so, the computer does what it is commanded by
the statement.

There are certain statements that require additional information after the declaration
name. For PRINT, one example of this additional information is an expression.

Here is a statement typical of PRINT

PRINT 16 * 64 + 128
 1152

READY.

Virtual screen 12 – Example of PRINT

PRINT is the keyword for this statement. Every word BASIC knows is called a keyword, and
all BASIC statements must start with one keyword.

If the computer does not recognise the first word in a line, it will report a “?SYNTAX ERROR”.
For example, if you type a line that starts with the word “SHUTDOWN”, the computer will
respond with the error message. The X16 does not have a keyword of SHUTDOWN.

The X16 expects perfect spelling. If you make a mistake by typing a keyword, even though
you only have one letter off, the computer will respond to the problem with a “SYNTAX
ERROR”. “PRITN64” won’t work, therefore, and “PRINU64” will not work either. For the
computer to recognise the keyword, every letter must be correct.

You do not have to be so fussy in spaces, on the other hand. The following are legal and
workable lines.

PRINT64
 64

READY.
PRINT 64
 64

READY.
PRINT 2 + 3*4
 14

READY.

Virtual screen 13 – Example of legal whitespace

The computer does not recognise and ignores any space. However, it cannot be used inside
a keyword. “P R I N T” will not be interpreted by the computer. Using the spacing carefully,
simply makes reading the line easier. The second line below is easier to read than the first.

PRINT(64+16)*(128+512)
 51200

READY.
PRINT (64 + 16) * (128 + 512)
 51200

READY.

Virtual screen 14 – Example of white space

CHAPTER 3 – INTRODUCTION TO BASIC 50

It is possible to abbreviate most keywords. Knowing these short-cuts can make typing BASIC
programs quicker. Personally, I only know a few short-cuts. The X16 will convert the short-
cut before the statement is stored in memory or processed.

Summary - Statements

 • Every statement begins with a keyword. Some statements

need to know more about the keyword Maximum file size is

4GB

 • The PRINT keyword requires a number or expression which

tells the computer what to print on the screen

 • Some keywords can be abbreviated

 • Keywords should be correctly spelled. You cannot insert

spaces inside a keyword

 • Spaces can be put in a line virtually everywhere else.

Spaces are used to make reading a line easier

PRINT statement
So far, we have used the print statement with numbers and operators to display the answer
on the screen. The term print remains in place from the days before video display when the
display device on the computer was a printer. Nowadays, we can use or view the
information using our HDTV or monitor, and PRINT means “display on a screen.” When the
computer displays to the screen, it is said to be printing to it. The PRINT statement has a
short form which is the question mark character (?). We can retry an earlier example to see
it work.

? 64 + 64
 128

READY.

Virtual screen 15 – Example of short form PRINT

Many BASIC statements have short forms. The purpose is the ease of typing. By typing “?”
you are typing four fewer letters.

CHAPTER 3 – INTRODUCTION TO BASIC 51

Summary - PRINT

 • The PRINT statement enables the computer to display on

the screen

 • The abbreviated form is “?”

 • This is a statement commonly used in BASIC programming

 • The computer sees the question marking as the same as the

PRINT declaration

POKE Statement
POKE is often used as it allows the contents of a memory location within X16 to be changed.
You are in effect ‘poking’ at a value in memory to change it. A variety of things can be done
by POKE. You use POKE, for example, to change your X16 register or variable values. The
syntax of POKE as a keyword is (POKE), followed by a number (or expression), a comma, and
finally, the second number (or expression). The first number indicates the computer’s
memory or hardware location. Memory settings are used to store information such as
software, display screen and system software.

On vintage computers like the Commodore 64 or VIC 20, the POKE command was especially
powerful as it allowed you to change values in memory to create graphics. On the
Commander X16 we cannot POKE into video memory, we have the VPOKE command, which
will be discussed later.

The Commander X16 can access a total of 65536 addresses. The data or value in each
address is between 0 and 65535. Position 0 is the first address. This idea may be a little
unfamiliar because usually, you start with 1 when you count. Remember, zero is also a
number. And you start with zero when you count memory addresses or the values in them.

The purpose of each address can be different. For example, address 40800 is used by the
VIA#1 I/O Controller. Another example is address 40739, which is the data port 0 on the
VERA graphics module.

Generally, the use of the POKE statement will be used for I/O programming or for creating
cheats for games.

You will receive an “ILLEGAL QUANTITY” error when trying to POKE an address with a value
outside the range of 0 to 255. This is because POKE can only affect a single byte of data at a
memory location. A single byte can only have a value between 0 and 255.

A word of caution is essential here. The POKE statement is extremely powerful, but
additional responsibility is needed. Unknown addresses should not be changed carelessly.
You cannot physically damage your Commander X16 by changing the values of random
addresses, but you can accidentally force your computer to ignore your keyboard entries so

CHAPTER 3 – INTRODUCTION TO BASIC 52

that the computer seems to stop working entirely. It is called a system crash. Crashing the
computer is not a problem. Simply turn it off and back on again.

POKE could cause a system crash. Crashing the Commander
X16 is not a problem. Simply restart it

Summary - POKE

 • There are 65536 memory addresses in the Commander X16.

The numbers vary between 0 and 65535

 • Some addresses are used to contain information. Other

addresses are hardware related

 • The value is between 0 and 255 for every location

 • The POKE statement replaces an address’s contents with a

new value

 • The POKE statement replaces an address’s contents with a

new value

 • The POKE Statement syntax is the POKE Keyword, a number

or expression to show where to change the position, a

comma, and the second or new value in the address

 • An abbreviated form is, P shift-O

VPOKE Statement
Similar to the POKE statement, VPOKE allows the contents of a memory location within
VERA to be changed. The Video Enhanced Retro Adapter (VERA) graphics module has three
banks, each having 65536 addresses. The first two banks are used for graphics, and the third
bank is for controlling VERA. The syntax of VPOKE is the keyword VPOKE, followed by a
number (or expression), a comma, a second number (or expression), a comma and finally
the third number (or expression). The first number is the VERA bank (valid range is 0,1,15).
The second number is the address in that bank (valid range is 0 to 65536). The third number
is the new value to be stored (the valid range is 0 to 255).

The VERA module is an impressive piece of technology and is covered in detail in a following
chapter. For now, we will experiment by changing a few basic values.

VPOKE 0,0,1
VPOKE 0,2,49
VPOKE 0,4,54

Virtual screen 16 – Example of VPOKE and placing characters

CHAPTER 3 – INTRODUCTION TO BASIC 53

Displayed in the top left-hand corner is X16. The values that we stored (1,49,54) are screen
display codes. To see all of the Commander X16 screen codes, check out Appendix
TODO X16 Screen Display Codes.

Now we will change the colours of those letters.

VPOKE 0,1,1
VPOKE 0,3,2
VPOKE 0,5,3

Virtual screen 17 – Example of VPOKE changing a character colour

The X16 in the top left-hand corner should now be coloured white, red and cyan. There are
16 colours, in the range 0-15. We can change the background colour for each individual
character.

VPOKE 0,1,16
VPOKE 0,1,17
VPOKE 0,1,18

Virtual screen 18 – Example of VPOKE changing background colour

TODO work out a good way to explain how background changed by poking
TODO work out a way to change screen background and border

While in our POKE statements we used only numbers, expressions can be used instead of
numbers, so the statement shown below is an alternative way to set the background colour
to red.

VPOKE 0,1,16/8

Virtual screen 19 – Example of VPOKE changing background colour with an expression

Maybe you want to experiment further and see what other colours can be put on the
screen. Nevertheless, bear in mind that your characters are white. So, if you are going to
change the background of the screen to white, first change the colour of the text character
by holding down CTRL and pressing the key 1 (for black). The text characters, otherwise, will
be the same colour as the background, and the screen will appear to be blank.

CHAPTER 3 – INTRODUCTION TO BASIC 54

Summary - VPOKE

 • There are three banks of 65536 memory addresses in VERA

 • Some places are used to contain information. Other

addresses are hardware-related

 • The value is between 0 and 255 for every location

 • The VPOKE statement replaces a location’s contents with a

new value

 • The VPOKE Statement syntax is the VPOKE Keyword, a number

or expression to select the bank, a comma, a number or

expression to show where to change the position, a comma,

and number or expression which will become the new value

in the location

 • There is no abbreviated form

Multiple Statements
Now that you have given a workout to the PRINT and VPOKE statements, you have seen
how the computer accepts a line you enter, searches for a keyword it recognises and
executes the statement. You have just placed one statement on each line so far. But you will
often want to put multiple statements on one line. This is done by means of the colon (:).
The colon’s purpose is to tell the computer where one statement ends, and the next one
starts. Try this example with several statements on one line.

? 64: ? 16: ? 128: ? 512: ? 2048

Virtual screen 20 – Example of multiple short form commands

After pressing the RETURN key, a column of numbers should have been printed before the
READY prompt was printed.

By default, the X16 uses 80 characters per row and 60 rows per screen. A line in BASIC
cannot be longer than 80 characters. If you type in 81 or more characters without pressing
the RETURN key, the computer will ignore the first 80 characters and accept the remainder.
If the remainder occurs in the middle of a statement, the computer will generate a “SYNTAX
ERROR”. Type lines short enough, so you do not use more than 80 characters to prevent
problems.

CHAPTER 3 – INTRODUCTION TO BASIC 55

Summary - Colon

 • A colon : is used on one line to separate multiple

statements

 • The computer can handle a maximum line length of 80

characters

CHAPTER 3 – INTRODUCTION TO BASIC 56

Introduction to Variables

So far, only PRINT and POKE statements have been used. And we have re-typed the line
every time we wanted to change the number we print or to change the colour of a
character. However, numbers can be represented more easily.

During the PRINT and POKE demonstrations, you may have wondered if you type anything
other than a number like an alphabet letter what would have happened? Just try now.

PRINT X
 0

READY.

Virtual screen 21 – Example of printing a variable

A number zero is printed on the screen instead of an X. Try a few more letters.

PRINT Y: PRINT Z
 0
 0

READY.

The computer prints zero each time.

This does not mean that every letter is interpreted by the computer as number 0. Instead,
the computer considers that the letter is a variable, and it is the variable that has the value
of 0.

A variable is composed of two things, a name and a value. It is known as a variable because
the value can be changed. The number 5 is always 5, and PRINT 5 always prints 5 on the
screen. However, a numerical variable can have different values to represent any number at
different times.

All of the variables you saw so far (X, Y, and Z) had a value of 0. You did not give them value,
so the computer assigns a default value of 0.

LET statement
To assign a value to a variable, we use the LET statement. The LET syntax is very distinct
from the PRINT or VPOKE syntax. The syntax is the LET keyword, a name for the variable, the
equal symbol then a value or expression.

LET X = 16

READY.

Virtual screen 22 – Assigned a variable value

The first step that the computer does is evaluate the part of the statement to the right of
the equal sign to compute a value. Then the LET statement is performed. If an expression
appears, it must be evaluated. When the computer has a value, it is assigned into the
variable on the left of the equal symbol.

CHAPTER 3 – INTRODUCTION TO BASIC 57

Now the variable can be used, for example with a PRINT statement.

PRINT X
 16

READY.

The computer answered the usual READY prompt when you entered the LET state. There is
nothing to be printed by the LET Statement itself. The value assignment is done in the
memory of the computer.

Assigning a value to one variable does not affect other variables. The variables Y and Z still
have the default value of zero. However, we can change that quickly.

LET Y = 64: LET Z = 128

As we can see, every variable is independent.

PRINT X: PRINT Y: PRINT Z

Once a value is assigned to a variable, it does not mean that the value is permanently set.
Another LET statement can change the value. While a variable value may be altered, a
variable at any time can have just one value.

LET X = 64: PRINT X: LET X = 16: PRINT X

Furthermore, once a variable has been set, that value remains unchanged. Additionally,
without creating conflict, two separate variables can have the same value.

LET X = 16: LET Y = 16: PRINT X: PRINT Y

It is illegal for the LET statement to change the value of a constant. For example, the
statement below.

LET 5 = A

Will create a “?SYNTAX ERROR” as the number 5 is an integer constant and its value cannot
be changed.

CHAPTER 3 – INTRODUCTION TO BASIC 58

Summary - LET

 • The LET statement replaces the value of a variable with a

new value

 • The syntax for LET is the keyword (LET), a variable name,

an equal sign, and a number or expression

 • Abbreviated form, L + Shift-E

Rules of Variables in BASIC
In BASIC, the names of variables must follow the rules.

• The first character must be alphabetic. (Range A-Z)

• The 2nd character may be alphanumeric. (Range A-Z and 0-9)

• Any more alphanumeric characters are allowed but are not considered

part of the variable name

• The second character may be % to represent an integer or $ to

represent a string variable

• The second character may be (to represent a subscripted variable

• A name cannot include reserved words since the BASIC interpreter will

treat them as keywords

Variable names can be of any length but BASIC only deals with the first two characters. All
variable names cannot have the same first two characters.

LET PLAYER1LIVES = 3: PRINT PLAYER1LIVES
LET PLAYER1PTS = 12345: PRINT PLAYER1PTS
PRINT PLAYER1LIVES

Virtual screen 23 – Example of conflicting variable names

In the above code, the variable PLAYER1LIVES was assigned a value of 3. BASIC refers to that
variable by the name PL. We then assign the value of 12345 to PLAYER1PTS. However, this
variable has the same first two letters. The BASIC interpreter will store the value 12345 into
the variable PL. This has just overwritten our PLAYER1LIVES from the value 3 to 12345.

Variable names CANNOT be identical to BASIC keywords and may not contain keywords
anywhere in the variable name. All BASIC commands, statements, function names and
logical operator names are covered as keywords.

LET PLAYER1PRINT = "YES"

Virtual screen 24 – Example of the variable name with a keyword

If you use a keyword within the variable name by mistake, the BASIC error message
“?SYNTAX ERROR” will appear. In the above example, we used the keyword PRINT.

CHAPTER 3 – INTRODUCTION TO BASIC 59

Summary - Introductory BASIC Variables

 • A variable consists of a name and a value

 • Variable names must be unique

 • All variables have a default value of zero

 • You can modify the value of a variable. This is the

difference between a number and a variable

 • Variables are independent. Changing a variable does not

change another

 • A variable keeps its value until it is changed

 • A variable can only be one value at a time

 • Letters of the alphabet may be used as names for

variables

 • There may be any value valid for a number in a numeric

variable

Functions

Functions are not statements. Functions are not operators. Functions are not variables.
Functions are a class by themselves. Functions return values that are used by other
functions or statements. You CANNOT use a function by itself. Functions are used in
statements where a number or value would be. It is said that the statement calls the
function.

Functions have names just like variables but are they are not assigned values. Functions
normally require that a value be passed to them. They then perform a process and return a
value. This chapter will introduce several functions. Functions can be important tools for
creating good programming logic.

Mathematical functions can be written using the notation F(X)=Y. Y is the result when the
value X is given to the function F. Functions are good examples of the concept input/output.
A value is an input to the function, it processes it, and a value is output from the function.
Different functions follow different processes and will return different values.

BASIC functions pretty much work in the same way. Here are several examples.

LET X = RND(10)
LET X=8: PRINT ABS(X-9)
LET X=2.2: PRINT INT(X)

A function performs its process on a single value unlike operators (+ - * /) which require at
least two values to create a result.

CHAPTER 3 – INTRODUCTION TO BASIC 60

At least three letters are used in the names of BASIC functions. The name of a function is
immediately followed by a pair of parentheses containing a value that can be a number, a
variable, or an expression. This value for the function in parentheses is the value or
argument. Spaces in the name of the function or between the name and the opening
parenthesis are not permitted.

Summary - Functions

 • A function is not used independently. A function is

called by a statement

 • The function has no value. Rather, a function is a value-

generating process. The resulting value may then be used

as a number. A function will return the created value to

the statement which called it

 • A BASIC function has a name composed of at least three

alphabetic characters

 • The function name is followed by a pair of parentheses.

There can be no spaces in the function name

 • Inside the parentheses, the input value or argument for

the function is stored. A function can only have one

argument

Absolute Value (ABS) function
There are two sections of a number: an absolute, and a sign (plus or minus). The ABS
function removes the sign from a number. When the sign is positive, the absolute value is
returned unchanged. When the sign is negative, it will be changed to positive, and then the
absolute value is returned. The absolute value function returns a positive value every time.

In BASIC, the Absolute Value function is called ABS.

PRINT ABS(10)
PRINT ABS(-10)

In the example, the value which is printed to the screen in both instances is 10.

The real utility of this function is that many other functions and statements can only accept
positive values. Using this function will ensure that the values being used are positive.

CHAPTER 3 – INTRODUCTION TO BASIC 61

Summary - ABS

 • The syntax for ABS is the keyword (ABS), parentheses, the

argument (a variable name or value), closing parentheses

 • The ABS function always returns a positive value

 • Abbreviated form, A + Shift-B

Integer (INT) function
An integer is a number that can be written without a fractional component. As a reminder,
BASIC has three variable types. String variables, which hold characters. Integer variables
which can hold -32768 to +32767. Finally, real variables which can hold +-2.93873588 X 10-
38 to +-1.70141183x1038. When a value is passed to the INT function, it will return the
nearest integer that is less than or equal to the argument value.

PRINT INT(10)
PRINT INT(2.938735880000000001)

In the example, the argument of 10 is already an integer, so there is no change. The long
number is not an integer, so the INT function returns the value 2.

It might appear that the integer function simply removes the fractional component.
However, when we use a negative number as the argument, the value returned is the
greatest integer less than the argument value.

PRINT INT(-10)
PRINT INT(-2.93873588)

In the example, the argument of -10 is already an integer, so there is no change. The long
negative number is not an integer and the next integer less than -2.93873588 is not -2 but -
3.

The integer function will never return a value larger than the argument provided.

CHAPTER 3 – INTRODUCTION TO BASIC 62

Summary - INT

 • The syntax for INT is the keyword (INT), parentheses, the

argument (a variable name or value), closing parentheses

 • The INT function returns a value less than or equal to

the argument

 • The INT function never returns a value larger than the

argument

 • Abbreviated form, none

Nesting of functions
Now that we have seen a few functions, we will look at a useful feature of functions. That is
the returned value can be used like any other number. With this, it is possible to use the
value returned from one function as the argument for another. This is called nesting the
functions.

PRINT ABS(INT(64))
PRINT INT(ABC(2.56))
PRINT ABS(INT(-128))
PRINT INT(ABC(-5.12))

In the example, you should notice the two pairs of parentheses are required. Each opening
parenthesis must have a closing parenthesis. Otherwise, a “?SYNTAX ERROR” will be
created.

The order the functions are nested will affect the result. The functions deepest inside the
nest are processed first. The value returned from them is then passed as the argument for
the next function, and so on.

PRINT ABS(INT(-128.256))
PRINT ABS(SGN(INT(-128.256)))

In the first line of the example, the INT function returns a value of -129 which is passed to
the ABS function which returns a value of 129.

In the second line of the example, the INT function returns a value of -129 which is passed
to SGN which returns the value of -1, and this value is then passed to the ABS function
which returns a value of 1.

As we can see, it is possible to build complex logic from a few simple functions.

CHAPTER 3 – INTRODUCTION TO BASIC 63

Summary - Nested functions

 • The value returned by a function can be used as an

argument to another function

 • Each opening parenthesis must be matched with a closing

parenthesis

 • The deepest function is evaluated first

Random (RND) function
The RND function returns a floating-point number between the range of 0.0 to 1.0. The RND
function is somewhat unique in the way the argument affects the returned value. When an
argument is a positive number, it will return a random number from a predetermined
sequence.

PRINT RND(10)
.185564016
PRINT RND(10)
.0468986348

Virtual screen 25 - Example of RND from a sequence

In the example, we see random numbers being returned. However, these are from the
sequence. When the computer is restarted, and the same example is entered, you will see
the exact same random numbers. This feature can be useful when creating procedurally
created games. The procedurally created data could be the same each reboot and across
the entire Commander X16 platform.

When the argument passed to RND is the value zero, the X16 will generate the random
number from the internal clock. Because the number range from the clock is 0-60, the
RND(0) function might not be suitable for creating large ranges of numbers. It is possible
that patterns may become apparent. It is still useful for games, just maybe not applications
that require truly random numbers.
TODO check GIT source for RND

PRINT RND(0)
 .74621658

READY.
PRINT RND(0)
 .404580259

READY.

Virtual screen 26 - Example of Random RND

The random numbers you see on your X16 should not match the above example. They
should be completely random.

When the argument passed to RND is negative, it will return a particular number in the
determined sequence. Repeatedly calling RDN with the same negative number will result in
the same value being returned.

CHAPTER 3 – INTRODUCTION TO BASIC 64

PRINT RND(-10)
 3.73729563E-08

READY.
PRINT RND(-10)
3.73729563E-08

READY.

Virtual screen 27 - Example of RND to return a particular number

The random numbers you see on your X16 should match the above example.

The RND function is very useful in games and applications. It can be used to creating some
random numbers to seed the locations of enemies in games and used for simulating rolled
dice. The drawback with the function is it returns decimal numbers between 0.0 and 1.0.
However, with nested functions, we can create the number of values we want.

PRINT INT(RND(0)*128)
PRINT INT(RND(0)*6)+1

In the example, we could get a random number between 0 and 127. Then we could get a
random number between 1 and 6.

Summary - RND

 • The syntax for RND is the keyword (RND), parentheses, the

argument (a variable name or value), closing parentheses

 • The RND function returns a random value from a

predetermined sequence if the argument is positive

 • The RND function returns a random value generated from

the internal clock if the argument is zero

 • The RND function returns a particular value from a

predetermined sequence if the argument is negative.

Repeated calls with the same negative argument will

result in the same ‘random’ number in the predetermined

sequence

 • Use nested functions to create useful random ranges

 • Abbreviated form, R + Shift N

Free Memory (FRE) function
This function will return how much free memory is available for use by BASIC in the base
memory space. As a refresher, the Commander X16 base memory is 64 x 1024 = 65536
bytes. Measuring space and memory in computers 1024 bytes is called 1 K. The X16 has 64k
of base memory and 512k of high memory. Different portions of memory are reserved for
the Kernal, BASIC interpreter, sound and external input/output. Once all the reserved
locations are accounted for, there is around 38K left.

CHAPTER 3 – INTRODUCTION TO BASIC 65

The FRE function is somewhat unique that while an argument is required, it is a dummy
argument and will not affect the value returned by the function. If the argument is missing,
it will create a “?SYNTAX ERROR”.

The Commander X16 team have kept the BASIC commands backwards compatible with the
older Commodore BASIC v2. As a result, FRE still shares an odd behaviour. If the amount of
free memory is more than 32K, it will return a negative number that you need to add 65536
to get the actual free memory amount.

Summary - FRE

 • The syntax for FRE is the keyword (FRE), parentheses, any

value or argument (zero is ok), closing parentheses

 • If free memory is less than 32k, it will return the

correct amount

 • If free memory is greater than 32k, it will return a

negative amount which 65536 must be added to for the

correct result

 • Abbreviated form, F + Shift R

PEEK function
The PEEK function is for peeking at a location in memory and reading its value without
changing anything. The PEEK function operates the same as others function. The argument
which is passed to PEEK is the memory location that is to be viewed. The valid options are 0
to 65535. From this, we can see that PEEK can only view the base memory. You CANNOT
directly peek into the 512k -2048k of high memory. The value returned by PEEK will be an
integer number in the range of 0-255.

TODO PEEK into memory banks by poking value and switching bank

CHAPTER 3 – INTRODUCTION TO BASIC 66

Summary - PEEK

 • The syntax for PEEK is the keyword (PEEK), parentheses,

argument, or value in the range of 0-65535, closing

parentheses

 • PEEK will inspect the memory location passed in the

argument and return a value representing the contents at

that location. It will return an integer in the range 0-

255

 • PEEK only inspects locations in the X16 64k base memory

 • Abbreviated form, P + Shift E

VPEEK function
The VPEEK function is similar to the PEEK function. VPEEK views the memory contents of a
memory location within VERA. As a refresher, the Video Enhanced Retro Adapter (VERA)
graphics module has three banks, each with 65536 addresses. The first two banks are used
for graphics, and the third bank is for controlling VERA.

The VPEEK function is different than other BASIC functions in that it requires two
arguments. The first argument is the VERA bank. The valid options are $0,$1 and $F. The
second argument is the address in the selected bank. The valid options are 0 – 65535.

Turn on or reset your Commander X16 and type in the example below.

PRINT VPEEK(0,2048):PRINT VPEEK(0,2050):PRINT
VPEEK(0,2052):PRINT VPEEK(0,2054)

Virtual screen 28 – Example of VPEEK

The numbers printed out are 18,5,1,4, which are the letters R, E, A, D. It is the ready prompt
which appears at the top of the screen. To check for yourself, have a look at Appendix
TODO X16 Screen Display Codes. If you type, return multiple times, so the first screen
scrolls off the top and try this example again, you will get different values. The contents of
those memory locations have changed. A more detailed explanation of VERA will follow in
another chapter.

CHAPTER 3 – INTRODUCTION TO BASIC 67

Summary - VPEEK

 • VPEEK needs two arguments

 • View the contents of VERA memory

 • There are three banks of 65536 memory locations in VERA

 • Some places are used to contain information. Other places

are hardware-related

 • The value is between 0 and 255 for every location

 • The syntax for VPEEK is the keyword (VPEEK), parentheses,

first argument which is the VERA bank value $0 $1 $F, the

second argument which is the location in the bank, and it

is in the range of 0-65535, closing parentheses

 • Abbreviated form, none

String functions

There are several functions which are for processing string variables. It is quite simple to
concatenate strings. It is just a matter of adding the strings together.

LET A$="COMMANDER X16"
LET B$="CONCATENATE"
LET C$="STRINGS"
LET D$=A$+" "+B$+" "+C$
PRINT D$

The functions LEFT$, RIGHT$ and MID$ will break up a string into a substring. A continuous
sequence of characters in a string is called a substring.

 The entire string
 S U B S T R I N G
 SUB STRING
 A 3-character

substring starting from
the left

A 6-character substring starting from the right.

Figure 9 – Explaining substring

There are other functions that perform some work on a string. Such as working out which
character code is being used in the string or the numerical value of a string.

LEFT$ function
The LEFT$ function creates a substring counting from the left side of the original string. The
syntax is the keyword LEFT$ followed by parenthesis, followed by a string or string variable,

CHAPTER 3 – INTRODUCTION TO BASIC 68

followed by a comma, then an integer or integer variable, then the closing parenthesis. The
string can have 255 characters and the integer can range from 0 to 255.

LET X$="COMMANDER X16"

READY.
L$=LEFT$(X$,9)

READY.
PRINT L$
COMMANDER

READY.

Virtual screen 29 – Example of LEFT$

RIGHT$ function
The RIGHT$ function creates a substring counting from the right side of the original string.
The syntax is the keyword RIGHT$ followed by parenthesis, followed by a string or string
variable, followed by a comma, then an integer or integer variable, then the closing
parenthesis.

LET X$="BASIC PROGRAMMING CAN BE FUN"

READY.
R$=RIGHT$(X$,10)

READY.
PRINT R$
CAN BE FUN

Virtual screen 30 – Example of RIGHT$

MID$ function
The MID$ function creates a certain length substring starting from a position on the left. The
syntax is the keyword MID$ followed by a parenthesis, followed by a string parameter,
followed by a comma, then the start position integer parameter, followed by a comma, then
the length of the substring parameter then the closing parenthesis. The start position
parameter integer must be greater than zero.

LET X$="MID$ FUNCTION DEMO"

READY.
PRINT MID$(X$,15,4)
DEMO

READY.
PRINT MID$(X$,1,4)
MID$

READY.
PRINT MID$(X$,6,8)
FUNCTION

READY.

Virtual screen 31 – Example of MID$

Length (LEN) function
When working with strings it may be important to know how many characters are in the
string. The LEN function returns an integer number value of the total of all characters in the
string. Non-printed and special characters are counted as well as blanks. The syntax is the
keyword LEN, followed by a parenthesis and the string or string variable parameter,
followed by the closing parenthesis.

CHAPTER 3 – INTRODUCTION TO BASIC 69

LET T$"COMMANDER X16 IS SUPER"

READY.
PRINT LEN(T$)
22

READY.

Virtual screen 32 – Example of LEN

ASC function
Every character that appears on screen has a number value ranging from 0 to 255. The ASC
function when passed a character or string will return the ASCII value of the first character.

Example of ASC

PRINT ASC(“X”)
A=ASC(“1”): PRINT A
PRINT ASC(“6”)

The abbreviated form is, A + Shift-S.

Summary ASC
The syntax is keyword ASC, parentheses, a parameter, closing parentheses. The parameter
must be a string variable which has a minimum of one character.
Abbreviated form, A + Shift-S

Mathematical Functions

Sine (SIN) function
The SIN function returns the sine of the radian value passed to it. The syntax is the keyword
SIN, followed by an open parenthesis, a numeric parameter, and the closing parenthesis.
The numeric parameter must be in radians, not in degrees.

Cosine (COS) function
The COS function returns the cosine of the radian value passed to it. The syntax is the
keyword COS, followed by an open parenthesis, a numeric parameter, and the closing
parenthesis. The numeric parameter must be in radians, not in degrees.

Tangent (TAN) function
The TAN function returns the tangent of the radian value passed to it. The syntax is the
keyword COS, followed by an open parenthesis, a numeric parameter, and the closing
parenthesis. The numeric parameter must be in radians, not in degrees.

Π (Pi) constant
The X16 has several reserved variables. The Pi variable is a special case and is treated as a
constant. It cannot be changed. Pi has its own character reserved for it as well. Press Shift-~
to display the π symbol.

CHAPTER 3 – INTRODUCTION TO BASIC 70

TODO

Logarithm (LOG) function
The LOG function returns a floating-point number which is the natural logarithm (to the
base of e) of the value passed to the function. The natural logarithm is the power to which e
would have to be raised to equal the value passed. The approximate value of e is
2.718281828. The syntax is the keyword LOG, followed by an opening parenthesis and a
number parameter, followed by the closing parenthesis. The number parameter can be an
integer or a floating-point number.

TODO better way to explain the use of natural log.

Summary

Square Root (SQR) function
The SQR returns the square root of the number parameter passed to it. The number passed
to SQR cannot be less than zero. The syntax is the keyword SQR followed by an opening
parenthesis and the number parameter followed by the closing parenthesis.

PRINT SQR(16)
 4

READY.
PRINT SQR(25)
 5

READY.

Value (VAL) function
It is possible to convert a string into a number that computer can perform mathematical
functions on. The VAL function will take a string that starts with a plus sign (+) or a minus
sign (-) or a digit and return its value.
TODO

LET S$="128"

READY.
PRINT (VAL(S$)-112) * 16
 256

READY.

Virtual screen 33 – Example of VAL function

CHAPTER 3 – INTRODUCTION TO BASIC 71

Sign (SGN) function
The SGN function returns one of three values. If the value/argument passed to the function
is positive (greater than zero) the function will return the value 1. If the value is zero, the
function will return a zero. If the value/argument is negative (less than zero), then the
function will return the value -1.

Example of SGN

PRINT SGN(256)
PRINT SGN(0)
PRINT SGN(-128)

This function can be useful in games. Using the SGN function, it is possible to determine if an
object was moving to the left or right, or not moving at all. For example, the variable X1
represents the objects current x co-ordinate and X2 represents the new location. The value
returned from SGN(X2-X1) will tell us which direction the object is moving. If the function
returns the value 1, then the object is moving to the right. If the function returns the value
of 0, then the object has not moved. If the function returns a value of -1, then the object has
moved to the left.

Summary - SGN

 • The syntax for the Sign function is the keyword (SGN),

parentheses, the argument (a variable name or value),

closing parentheses

 • The SGN function returns a value of 1 if the argument is

positive

 • The SGN function returns a value of 0 if the argument is

zero

 • The SGN function returns a value of -1 if the argument is

negative

 • Abbreviated form, S + Shift-G

Time functions

The X16 has an internal jiffy clock. A jiffy can have several different meanings, but in the
context of the Commander X16, it is 1/60 of a second. When the X16 is powered on, it starts
to count how many 1/60 seconds have passed. Performing a soft reset does not restart the
clock. The clock is initialized or set to zero on power-up. It is possible to reset the clock to
any value with the below functions. This can allow a stopwatch like functionality.

CHAPTER 3 – INTRODUCTION TO BASIC 72

Time (TI) function
The TI function reads the internal clock and returns the current jiffy count since the
computer was turned on. The TI function returns a value. It must be used with another
function such as PRINT or LET.

10 PRINT TI,"JIFFYS SINCE POWER ON"
20 PRINT "OR NUMBER OF SECONDS SINCE POWER ON",TI/60

It is possible to set the jiffy clock to any value. Setting the value of TI to 0 will reset the clock
and can act as a timer.

10 PRINT "TIME SINCE CLOCK RESET",TI
20 PRINT "RESETTING CLOCK.."
30 LET TI=0
40 PRINT "CLOCK IS NOW=",TI

Time$ (TI$) function
The TI$ function is similar to TI however it performs some maths and returns the number of
hours, minutes and seconds since the computer was turned on. The returned value is a
single number in the format HHMMSS.

The REM statement

The REM statement lets you place remarks in your program. The modern equivalent is the
comment. In this book I use remark and comment interchangeably. When I was new to
programming, I did not believe in commenting my code. I quickly discovered that when
returning to code I had written only a few months before I had forgotten what I was doing.
It would then take valuable time to work out what was happening. This was for my own
code! Working in teams made commenting code mandatory. BASIC textbooks from the
1980s may say that remark statements are for users benefit only, do not believe them. REM
statements are an important part of documenting your code and enable you to move
quickly around the program while you work on it and understand it when you return to a
project. Often REM comments are used in the first few lines of a BASIC program to describe
a number of different items. The name of the program, what it is going to do, who the
author/s are. A blank REM statement can be used to provide some ‘whitespace’ and create
clear breaks in the program. White space can help with the aesthetics and overall readability
of your code.

The syntax of the REM statement is the REM keyword, followed by optional text. When the
X16 finds a REM statement it will ignore the rest of that line, moving on to the next. REM
can be used on a line with other statements. However, remember it must be the last
statement on the line.

Good Comments
But what to comment? When you are reading code all you see is what is written there. Your
comments should explain what the code cannot. Are there special sequences in the code?
What do the variables mean? Is this a section of code that needs to be reworked. It is

CHAPTER 3 – INTRODUCTION TO BASIC 73

common to find TODO comments in code, reminding a programmer of something they
wanted to do but did not have time or all of the skills to do.

TODO BETTER CODE EXAMPLE HERE
Your comments should clarify the code.
10 LET X=16
20 PRINT X

The code makes sense, but why 16 and why am I printing it out? Your comments should
explain what the code is trying to accomplish. There is no point in commenting what the
code is doing.

10 REM SET X TO BE 16
20 LET X=16
30 REM PRINT OUT VARIABLE X
40 PRINT X

Do not comment on code which is easy to understand. The above comments do not clarify
what the code is trying to accomplish and do not add value.

Writing a comment that explains simple code does not add value. Comments are there to
help people understand your code quickly. Comments can be used to explain why certain
limits exist.

10 REM CALCULATE VALUE FROM TERRAIN GENERATOR FOR LOCATION X AND Y
20 **TODO** Add code example from terrain/dungeon generators

It can be helpful to record discoveries about the code or your thoughts as you worked, a
running programmer’s commentary. Include thoughts about problems or improvements
that could be done.

10 REM DO NOT USE RED ON BROWN AS COLOUR BLIND USERS WON'T BE
ABLE TO READ

10 REM *TODO* SORT IS SLOW, RESEARCH QUICKSORT

10 REM *FIX* PLAYER SPRITE WILL FLICKER IF X IS OVER 255 AND
PLAYER SHOOTING

10 REM *LIMIT* ENEMY SPRITES LIMITED TO NO MORE THAN 16
OTHERWISE THEY FLICKER

Virtual screen 34 – Examples of commentary comments

10 REM **TODO** create examples of good comments

Comment Keywords
It helps if you have a system for how you manage comments. Having a comment start with a
keyword helps set the tone of the comment. It also greatly helps with searching for
comments in your code. Some of the keywords I use you have seen in earlier examples. I
have included a few extra in the table below. The list is not exhaustive, and you can develop
your own.

CHAPTER 3 – INTRODUCTION TO BASIC 74

Keyword Meaning
TODO Outstanding task that has not been completed.
FIX / *BUG* A known bug or issue exists in this code.
CLUDGE A piece of programming that works but is not pretty at all.
XXXX A fundamental problem exists here. Comments around this code may

contain strong language.
ROLE Describe what the subroutine is providing
INPUT List the inputs needed for a subroutine.
OUTPUT Discuss the outputs from a subroutine.
DISCUSS /
REVIEW

Useful when working on a team and marking code for review.

LIMIT Comment about the limits of the code.
SUMMARY Used to provide a general summary of the code that follows.

Table 11 – Comment Keywords

When writing comments, it is very important to think about how others (including your
future self) will read and understand your code. Thinking yourself a few questions can help
you write better comments.

• What are the limits of this code?

• How might this code be misused?

• Are there any surprises in this code?

• Are there any design or strange details in this code?

It can also help to think you have someone sitting next to you and you are explaining what
your code does. I often end up working on several projects at once, some at work, some
personal and using different languages as well. Some modern comment advise is “Comment
the why, not the what”. However, remember the goal of comments to help the reader
understand the code easily. This means my comments often end up explaining the why, the
what and how!

Remarkable comments
While I believe comments should explain a lot, they need to be concise. You should not have
three lines of comments if a single line will do the job. Remember the goal of comments is
to explain the code, you must avoid vague sentences. As an example, consider the below
sentence.

REM INSERT TEXT INTO ARRAY, BUT FIRST CHECK IF IT IS TOO LARGE

Virtual screen 35 – Vague comment example

While this comment is grammatically correct, when reading this comment, what does “IT”
refer to? The array or the text? The reader would need to then read the following code to

CHAPTER 3 – INTRODUCTION TO BASIC 75

work out exactly what is happening. Consider rewording the comment being less ambiguous
and more precise.

REM IF TEXT IS LESS THAN 64 CHARACTERS, INSERT INTO ARRAY

Virtual screen 36 – Concise comment example

Because BASIC limits the size of variable names to two characters it is important to include
comments at the start of a subroutine which explain how variables will be used.

10 REM SUBROUTINE PLAYER BULLET COLLISION
20 REM *INPUT* PLAYER SPRITE SCREEN X,Y (PX)(PY) BULLET SPRITE
ARRAY (BS$)
30 REM *OUTPUT* UPDATE PLAYER STATE (PS) IF HIT
40 REM *SUMMARY* CHECK IF PLAYER HAS COLLIDED WITH BULLET
50 REM IF COLLISION REMOVE BULLET FROM ARRAY AND UPDATE PLAYER
STATE

Virtual screen 37 – Example of subroutine comments

Summary - REM

 • The syntax for REM is keyword (REM) followed by optional

text

 • The REM statement lets you place comments in your program

 • REM statements can be placed on a line after other

statements

 • When the computer encounters a REM statement the rest of

the line is ignored

 • Blank REM statements can be used to create ‘whitespace’

in a program

 • Comments need to be concise and help the reader

understand the code

 • Use of comment keywords can be helpful

Further Reading

All About the commodore 64 Vol 1 [8]
All About the commodore 64 Vol 2 [9]
The Century Computer Programming Course for the Commodore C64 [2]
Programming in BASIC a complete course by Margaret McRitchie [10]

CHAPTER 4 – WRITING BASIC PROGRAMS 76

Chapter 4 – Writing BASIC programs

“Most good programmers do programming not because they expect to get
paid or get adulation by the public, but because it is fun to program.” –

Linus Torvalds

Immediate Mode vs Deferred Mode

So far everything you have typed has been processed at once. Once you pressed the
RETURN key, the computer processed the line, presented any output, then the system
presented a READY prompt. The X16 has immediately processed the BASIC statements. This
is the immediate mode or direct mode. It is possible to enter multiple lines of BASIC to
complete simple tasks. As we can see in the below example.

REM P1 = PLAYER 1 LIVES
LET P1 = 3
PRINT P1

Immediate mode BASIC cannot be saved and executed at a later time. It has to be typed
each time. If you clear the screen or reboot the X16, everything is lost.

A BASIC program is stored in memory. You can use the RUN statement to execute or run the
program from memory. When the X16 executes a BASIC program, it is working in a deferred
mode—also called program mode. To have BASIC statements stored in memory, we have to
use line numbers. The line number determines the order of each line in the program. This
way, it is possible to enter code out of sequence and have it executed in the correct order.

5 REM P1 = PLAYER 1 LIVES, BO = BONUS
10 LET P1 = 3
20 PRINT P1
15 LET P1 = P1 + BO

Listing 4 - Simple example of BASIC

Valid line numbers are integers between 0 and 63999. Numbers with fractions are not
permitted, e.g., 1.5 or 10.25 are not valid line numbers. There does not have to be a
program line for every line number. However, no two lines of a program can have the same
line number. There are two problems with large line numbers. The first being, typing them.
The second problem is they use more characters on the line. In BASIC, we are limited to 80
characters per line. So, a five-digit line number will use four more characters than a single-
digit line number.

We can add lines to our program, and we can place the lines between existing lines of the
program. It is a frequent practice to increase the line number by increments of 10. This
allows for extra lines of code to be inserted. Otherwise, the program must be renumbered,
which can cause other issues as we will see later.

CHAPTER 4 – WRITING BASIC PROGRAMS 77

Summary - Immediate Mode vs Deferred Mode

 • The X16 works in immediate or direct mode, where the line

is executed as soon as it is entered

 • When a number is placed at the start of a line, the X16

will store it in memory as a program

 • The X16 ignores unused line numbers

 • The order of the program is sorted lowest to highest by

the line number

 • It is a good idea to increment line numbers by 10 to

allow the program to be changed easily

 • A line number does not represent its actual position.

E.g., A numbered line in a program of 5 is not always the

fifth line in the program. It could be the first

 • Line numbers must be integers in the range of 0 to 63999.

Other numbers will create a SYNTAX ERROR

 • When the X16 runs a program, it is in deferred or program

mode

Commands

LIST command
There is a number of BASIC commands, similar to statements. However, they are used in
immediate mode to manage programs. While it is possible to include commands in a
program, they may not function.
The LIST command has the X16 print all the lines in the program on the screen. The lines are
listed in order from lowest to highest line number.

LIST
0 REM EXAMPLE
10 LET PLAYER1LIVES = 3
20 PRINT PLAYER1LIVES
30 IF PLAYER1LIVES=0 THEN PRINT "DEAD": END
40 PLAYER1LIVES=PLAYER1LIVES-1
50 GOTO 20

Virtual screen 38 – Example of LIST

The LIST command can take an argument. It is possible to list a single line number or list a
range of line numbers. For example.

LIST 10
10 LET PLAYER1LIVES = 3
LIST 10-20
10 LET PLAYER1LIVES = 3
20 PRINT PLAYER1LIVES

Virtual screen 39 – Example of LIST with parameter

CHAPTER 4 – WRITING BASIC PROGRAMS 78

You can use the dash with only one line number for even more versatility. When you select
a line number and then a dash, the desired line will be displayed, along with all the lines that
come after it. The X16 can display all lines up to and including the requested line if you type
a dash and a line number. This is especially useful if you do not recall the first or final line
numbers of the program.

LIST 30-
30 IF PLAYER1LIVES=0 THEN PRINT "DEAD": END
40 LET PLAYER1LIVES=PLAYER1LIVES-1
50 GOTO 20

LIST -30
0 REM EXAMPLE
10 LET PLAYER1LIVES = 3
20 PRINT PLAYER1LIVES
30 IF PLAYER1LIVES=0 THEN PRINT "DEAD": END

Virtual screen 40 – Example of LIST using a range

Due to how the X16 handles line numbers if you LIST 0, the entire program will be displayed.
When dealing with large programs, the list will scroll past on the screen too quickly to be
read. You can slow the display down by holding down the CTRL key. It does not stop the
listing, but it does add a slight pause at the end of each line.

Summary - List

 • The LIST command will display the current program

 • After LIST you can define a line number range. Place a ‘-

‘ dash between the start and end line numbers

 • LIST number ranges can from the start of the program to a

line number or a line number to the end of the program

 • Holding CTRL key while LISTing the program will display

it slower than normal

RUN command
Once you have a BASIC program in memory, you command the X16 to execute the program
by using the RUN command. The RUN command orders the machine to run the program
from the first line. During the execution of a program, it is said to be running. When the last
line is completed, the execution ends. Then the READY prompt will be displayed.

10 PRINT "COMMANDER X16"
20 PRINT "BASIC COMMANDS"
RUN

COMMANDER X16
BASIC COMMANDS

READY.

Virtual screen 41 – Example of RUN

You can execute the program again by instructing it to RUN again. This is one of the benefits
of using a program. You can run it repeatedly. After a program has been RUN, any variables
used will keep their values.

CHAPTER 4 – WRITING BASIC PROGRAMS 79

When the RUN command is executed, it will clear all the program variables. Then it will start
the program on the first line. Like the LIST command, the RUN command can be given an
argument. You can select which line number you want the program to start running from.
Once started, the program will run until it is finished, or an error happens. A number range
may not be used with this command.

10 PRINT "COMMANDER X16"
20 PRINT "BASIC COMMANDS"
RUN 20

BASIC COMMANDS

READY.

Virtual screen 42 – Example of RUN with parameter

Normally the RUN command is used in immediate mode. However, it is possible to place the
command in a program to re-run the program. This could be useful if your program needed
to re-initialise variables or an array between executions.

10 PRINT "THIS PROGRAM WILL LOOP WITHOUT A GOTO"
20 RUN

Listing 5 – Using RUN inside a program

Summary - RUN

 • A program is executed using the RUN command. Execution

starts in the first line and ends when no more lines are

available

 • When a program is being executed, it is said to be

running

 • The RUN command clears all the variables automatically

before beginning program execution

 • Typically, the RUN command begins running a program on

the first line. The line number can be defined after the

keyword RUN to start execution at the specified line

number

 • RUN can be used as an alternative to the END statement to

restart the program

END Statement
The computer ceases working in immediate mode when you enter the RUN command and
begins operating in deferred mode. It runs every line of the program sequentially and
returns to immediate mode only if an error happens or if the last line of the programme is

CHAPTER 4 – WRITING BASIC PROGRAMS 80

executed. The keyword END, which is optional, will cause the computer to stop running the
program when it encounters it.

On the surface, the END statement might not appear useful. Placing it on the last line is
redundant. Placing it in the middle of the program does not seem to make much sense.
However, the END statement can be placed on the line with other statements and can be
used with IF-THEN.

10 IF X<16 OR X>16 THEN PRINT "ERROR! X IS NOT 16": END

Listing 6 – Example of the END statement

In the above example if X does not equal 16 then PRINT a message and END the program as
soon as the END statement is processed, the program execution stops. No other lines will be
processed.

Summary - END

 • The syntax for END is the keyword (END) followed by

nothing

 • When the END statement is processed, the computer will

stop executing the rest of the program

 • Using END on the last line of the program is redundant,

but it was used as a polite formality

 • The END statement can be placed on a line with other

commands

 • The END statement is often used with the IF-THEN

statement, as a means of ending the program if an error

has occurred or from user input, i.e., quit from the

program

 • Statements placed after the END statement on the same

line will not be processed

NEW command
The NEW command will remove the current BASIC program from memory.

LIST
10 PRINT "COMMANDER X16"
20 PRINT "BASIC COMMANDS"
NEW
LIST

READY.

Virtual screen 43 – Example of NEW

CHAPTER 4 – WRITING BASIC PROGRAMS 81

As well as removing the program, the NEW command will clear and remove all variables.
Now you can enter a new program. Unlike LIST and RUN, NEW does not accept a line
number argument. It cannot be used to delete part of a program. This program is useful in
direct mode, it can be used in program mode but when run it will remove the existing
program from memory.

Summary - NEW

 • A simple way to remove a program is to use the NEW

command, which deletes every line in the program and, at

the same time, removes all variables

OLD command
The OLD command will recover the earlier BASIC program that was removed using the NEW
command. It is also possible to recover the earlier BASIC program if the computer was
restarted using the RESET command. The program can then be RUN as normal. This
command useful in direct mode, it can be used in program mode but cannot restore the
previous program as there is currently one in memory. When used in a program it will not
generate an error.

Summary - OLD

 • A simple command to recover a program that was removed

using the NEW command

 • Can recover a program after the computer was restarted

using RESET

CLR command
Erases the contents of all variables in memory.

RESET command
This is a quite simple command that does a software reset of the X16. The BASIC program
and contents of variables are cleared but not lost. It is possible to recover the program and
variable contents using the OLD command. This command works in direct and program
mode.

CHAPTER 4 – WRITING BASIC PROGRAMS 82

Summary - RESET

 • A simple command to perform a soft reset of the X16

 • Previous BASIC program can be recovered using OLD

Editing a program

Entering a program
When you turned on your Commander X16 and entered some of the examples in this
chapter, you may have noticed a difference from earlier chapters. When you entered the
following line.

10 PRINT "COMMANDER X16"

Listing 7 – Creating a program

Nothing was displayed to the screen, not even a READY prompt. The cursor appeared on the
next line when you pressed the ENTER key. The line you entered was not executed because
it has a line number. It was stored in memory as a program line. We can now use the LIST
command to view the program. We can now execute the program with a RUN command to
see the information printed to the display. We can now add a second line to our program by
entering the following line.

10 PRINT "COMMANDER X16"
20 PRINT "BASIC COMMANDS"

Listing 8 – Building on a program

We can continue to add extra lines to our program.

10 PRINT "COMMANDER X16"
20 PRINT "BASIC COMMANDS"
30 ? "STATEMENT SHORTFORM"

Listing 9 – Three line program

Program lines are always put in memory, with two exceptions, exactly as you type them,
including spacing. The first exception is if the BASIC statement short form is entered, it will
be converted to the full statement. For example, using the “?” character instead of PRINT.
This “?” is converted to PRINT before stored in memory. If you use LIST, BASIC statement
short form will not appear. The second exception is that additional spaces between the line
number and the first statement are ignored. Those are referred to as leading spaces. When
the line is stored, only one leading area is kept.

10 ? "SHORTFORM WITH LEADING SPACES"
LIST
10 PRINT "SHORTFORM WITH LEADING SPACES"

Virtual screen 44 – Short form commands listed

CHAPTER 4 – WRITING BASIC PROGRAMS 83

Editing a program
After you have entered a line, you may need to modify it, correct a mistake, or add an extra
statement. You can change a line by retyping the line, using the same line number.

LIST
10 PRINT "COMMANDER X16"
20 PRINT "BASIC COMMANDS"
READY.
20 PRINT "EDIT THIS LINE"
LIST
10 PRINT "COMMANDER X16"
20 PRINT "EDIT THIS LINE"

Virtual screen 45 – Example of editing a program

The original line 20 with ’20 PRINT “BASIC COMMANDS”’ has been replaced with ’20
PRINT”EDIT THIS LINE”’. As mentioned earlier, no two program lines can have the same line
number.

Edit a line
If you only require making a small edit, then it is possible to use the cursor keys. Using the
up/down left/right cursor keys, you can position the cursor key and type over the top of the
existing line. Once you have finished and the cursor is still on the same line, hit the ENTER
key, and the line will be updated.

LIST
10 PRINT "COMMANDER X16"
<UP CURSOR KEY, RIGHT CURSOR KEY, -, ENTER>
LIST
10 PRINT "COMMANDER X-16"

Virtual screen 46 – Example of editing a line

If you do not press the ENTER key, the changes will not
be updated.

Delete a line
To delete a line simply type the line number and press ENTER. It will remove the line.

LIST
10 PRINT "COMMANDER X16"
20 PRINT "DELETE LINE"
READY.
20
LIST
10 PRINT "COMMANDER X16"
READY.

Virtual screen 47 – Example of deleting a line

Move a line
It is possible to move an entire line of code to a different line number. Simply edit the line
number and press ENTER to update the line. This will, in effect, copy the line to the new
location. Then simply delete the original line.

CHAPTER 4 – WRITING BASIC PROGRAMS 84

LIST
10 PRINT "COMMANDER X16"
20 PRINT "BASIC EDIT"
READY.
<UP CURSOR, UP CURSOR, 3, ENTER>
LIST
10 PRINT "COMMANDER X16"
20 PRINT "BASIC EDIT"
30 PRINT "COMMANDER X16"
READY.
10
LIST
20 PRINT "BASIC EDIT"
30 PRINT "COMMANDER X16"
READY.

Virtual screen 48 – Example of moving a line

Reminder that when editing a line, you must remember to
press the ENTER key while the cursor is still on the
line you are editing. Otherwise, the changes will not
be saved to memory.

Summary - Editing a program

 • When a line is stored in the memory, the cursor moves

onto the next line. No READY message is displayed

 • A program line is stored in memory exactly as it was

typed, except when leading spaces or short form are used.

E.g., short form “?” is converted to PRINT. E.g., 10<5

leading spaces>PRINT is converted to 10<1 leading

space>PRINT

 • A program line can be replaced simply by typing the line

number and new BASIC statements

 • A program line can be edited by using the CURSOR keys to

position the cursor and typing to modify the line. The

ENTER key must be pressed while the cursor is on the same

line for the changed to be updated in memory

 • To delete a program line, simply type the line number and

press ENTER. It will replace the contents of the line

with nothing, and blank lines are ignored

 • Errors are not detected when a line is entered and saved

to memory. Only when the program is executed can BASIC

detect errors

 • When executed if an error is encountered, BASIC will

display an error message and the line number which

triggered the error

CHAPTER 4 – WRITING BASIC PROGRAMS 85

Storage

The X16 has fast and reliable SD card storage. SD cards are much quicker and have a larger
capacity than storage used by vintage computers from the 1970s, 80s and 90s. During the
late 1970s, a 5.25” floppy disk could hold 110kB. In the early 1980s, as computers became
more mainstream, a 5.25” floppy could hold 340kB. By the late 1980s, as technology
changed, a 3.5” floppy could hold 1440kB. The 1990s saw CDs become readily available,
having a storage capacity of 700,000kB. Each technology change saw an increase in storage
capability and performance. With the X16, we can use a standard SD card. A small 16GB SD
card holds 16,777,216 kB and is lightning fast compared to a floppy disk. For a retro
computer such as the X16, this is truly a massive amount of available space.

When using an SD card, the X16 uses the FAT32 file system. FAT32 is a 1996 extension to the
FAT file system, first introduced in 1977. This upgrade allows for large volumes, and
Windows supports up to 32GB. However, the maximum individual file size is 4GB in size,
which is unlikely to be used on the X16.

Summary - Storage

 • SD Card will use FAT32 file system

 • Maximum file size is 4GB

SAVE command
Saving your data is essential and makes using the X16 more convenient. If we turned on the
X16 and had to re-type our programs or data, that would be frustrating very quickly.
Instead, we can store our programs on to some removable media. Most often, it will be an
SD card. The Commander X16 supports an IEC connector, so connecting a vintage floppy
disk drive and saving data onto a floppy disk is possible. The SD card media is faster, smaller
and is more reliable.

To keep our data, we will use the SAVE command. The syntax is the keyword SAVE followed
by a string parameter representing the filename you want to use for the file. While the file
name can be 60 characters long with letters, numbers, and spaces, be aware that only the
first 16 characters of a filename will be displayed when viewing a directory. Also, only the
first 16 characters will be used when LOADing a file. Using a long file name may make the
file inaccessible on the X16. After the filename, we use a comma to separate optional
parameters. The first optional parameter is the device number. The second optional
parameter is called the secondary number. Device numbers allow us to communicate with
different devices. The device numbers 8 to 11 are for SD/Disk drives. If a device number is
not provided, the X16 will default to the last device communicated with, typically 8. The
secondary number generally with disk drives only has two options; the value zero, which
indicates a BASIC program will be saved, and value one, which indicates a machine language
program is being written to the media. The secondary number will default to zero if not
provided.

CHAPTER 4 – WRITING BASIC PROGRAMS 86

SAVE "FILE-NAME.PRG",8

SAVING FILE-NAME.PRG
READY.
DOS"$"

0 "X16 DISK " FAT32
1 "FILE-NAME.PRG". PRG
98 MB FREE

Virtual screen 49 – Example of SAVE command

Be careful when using the space in a file name. It can be difficult to read. Also, I recommend
against starting a file name with a space.

Be aware of using SPACE and other characters which
could be misread or mistyped when using the LOAD
command.

SAVE "IDEA 1",8

SAVE " IDEA1",8

Virtual screen 50 - Example of file misreadable filename

Be aware of using long filenames. The full name will
not be displayed, and the LOAD command will not be able
to load it from media. Limit filenames to 16
characters.

VERIFY command
Older magnetic media such as floppy disks, while reasonably reliable, are not perfect and do
degrade over time. SD cards are significantly more reliable, but they can wear out. You can
use the VERIFY command to ensure the removable media has the file correctly stored. The
VERIFY command will compare the contents of a BASIC program file on removable media
with the program stored in memory. Usually, a VERIFY command will be used after a
successful SAVE command. The VERIFY command is only helpful in saving and comparing
BASIC program files.

The syntax is the keyword VERIFY followed by a string parameter representing the filename
you want to check. The filename can only be 16 characters long, consisting of letters,
numbers and spaces. After the filename, we use a comma to separate the optional device
number parameter.

As the VERIFY command executes, it would respond with "OK" if the file stored on the
media matches the one in memory. However, if the program in memory does not match the
file on the media, a "?VERIFY ERROR" will be shown on screen.

CHAPTER 4 – WRITING BASIC PROGRAMS 87

10 PRINT "SAVE AND VERIFY"
20 GOTO 10
SAVE "IDEA-1.PRG",8

READY.
VERIFY "IDEA-1.PRG",8

OK

READY.

Virtual screen 51 - Example of VERIFY command

LOAD command
We need an easy way to execute our programs or access the data stored on removable
media. We can load our program using the LOAD command.

TODO

LOAD"FILE-NAME.PRG",8

SEARCHING FOR FILE-NAME.PRG
LOADING FROM $0801 TO $0822
READY.

Virtual screen 52 – Example of LOAD command

DOS command
The DOS command allows access to the SD card. The syntax is the keyword DOS followed by
a string. The string is processed by the DOS command to perform several actions.

Finding the current status of the SD card is simple, no string is required.

DOS
73,CMDR-DOS V1.0 X16,00,00

Virtual screen 53 - Example of DOS command showing status

To perform a directory listing and view a list of contents on the SD card you can perform the
following command.

DOS"$"

0 "X16 DISK " FAT32
98 MB FREE

Virtual screen 54 – Example of DOS Directory listing

Deleting a file is possible and to do so type

DOS”S:BAD_FILE”

ST variable

CHAPTER 4 – WRITING BASIC PROGRAMS 88

Floppy Disk
TODO discuss floppy disk IEC / commodore 1541 etc.

Interacting with the user

As a programmer, you need to think about what task your software will perform for the
user. Generally speaking, a program must allow a user to make choices. But when the user
runs the software, you cannot read their mind. The software will have to interact with the
user in some fashion. On the X16, we can use the keyboard and various peripherals such as
a mouse or joystick to get input from the user. The joystick is a great way to get feedback
from a user. It has limited choices, and people are familiar with them nowadays. People also
understand how to use a mouse. However, programming for mouse use creates extra work
as you will need to think about the user interface and process mouse clicks and movement.
It is a good idea when using a peripheral to provide a keyboard option. For example, when
designing a game, offer keyboard controls and the joystick. Or when developing an
application that uses a mouse also allows keyboard hotkeys. On the X16, the keyboard can
supply a lot of information. The function keys, cursor keys and number pad can all provide a
quick and easy way for people to use your software.

There are some basic principles for user interaction. When designing your software, think
about how the user will use it. Clarity is key. The program flow should be streamlined, and
tasks should take as few steps as possible. Each screen should have one primary job. For
example, a help screen will provide information, and a load file screen will allow file
selection and loading. Keep the appearance consistent and straightforward. When a design
is consistent, it becomes easier to use. Think about providing feedback to the user via audio
or on-screen. User action should get feedback to show it was successful or not. For example,
a happy ding sound when an action is accepted, or a buzzing sound when an error has
happened. Feedback can also help answer questions before the user even thinks about it.
Location, where is the user in the software? For example, the load file screen will clearly
show the load file screen, not the save file screen. Current status, what is happening? Is it
still going on? For example, a game loading screen may have a percentage. The user can see
the game is loading and 50% complete. Future status, what will be happening next? The
same game loading screen should have a message letting the player know which level is
about to start. Try and reduce the user’s cognitive load. Use common names, screen
locations and images/icons to help users identify functionality. Make sure that information
is accessible. The modern “3 click rule” says it should not take more than three mouse clicks
to find any piece of information. Think about accessibility, if you have a button for a mouse
to click on provide a keyboard shortcut for it. When using colour, think about how it will
look to people. 8% of men and 0.5% of women have a form of colour blindness. Do not rely
on colour to communicate information. Lastly, provide a clear next step. The user should not
be left guessing what to do next.

There are often complications when software interacts with a user. The screen’s instructions
may be vague or open to interpretation, or the user may not have read them. When you get
input from a user it often needs to be placed into a variable. The user may hit the enter key
without having entered any data. When prompted for a choice between 1,2 or 3 the user
may have typed “All”. The software could be expecting an answer between 1 and 10 and the

CHAPTER 4 – WRITING BASIC PROGRAMS 89

value “-500” is entered. When getting input from a user it is important to check the type of
data you are getting and make sure it is inside the scope of what you expect.

GET statement
The GET statement will read a single character from the keyboard buffer and transfer it to
the named variable. The syntax is the keyword GET followed by a variable. Every time the
statement is processed it will get a single entry from the buffer. Normally the buffer is
empty nothing is actually getting stored in the variable. If you run the below example, you
will see a lot of -48 scrolling by.
TODO is -48 a bug?

10 GET A
20 PRINT A
30 GOTO 10

Listing 10 – Example of GET statement

If the variable you specified was a float or integer you can only assign values between 0 and
9. If a non-numeric key is pressed such as X, then a “SYNTAX ERROR” will be triggered. To
capture most of the keys you would specify a string variable such as A$. A number of the
keys will not be captured; RUN/STOP, ESCAPE, SHIFT, X16, CTRL and RESTORE
TODO verify non captured keys.

The GET statement has limited use unlike its related statement GET# which will be discussed
later. Another limitation of the GET statement is it can only be used in a program. Trying to
use it in direct mode will result in an “ILLEGAL DIRECT” error.

Summary - GET

 • GET statement retrieves a single keypress from the buffer

and assigned it to a variable

 • Syntax is GET keyword followed by a variable name or a

list of variables

 • Can only be used in program mode. If used in direct mode,

the computer will respond with an “ILLEGAL DIRECT” error

INPUT statement
The INPUT statement is the preferred way of getting keyboard input from a user. Similar to
the GET it can take keyboard input and assign it to a variable or a list of variables. Also, the
INPUT statement can only be used in program mode. However, that is where similarities
end. The INPUT statement can display a prompt with a question mark as well as displaying
the text a user enters. It is possible for a user to correct the input using the delete or cursor
keys. The program waits for data and the on-screen input can be edited until the RETURN
key is pressed. Once RETURN is pressed the statement processes the input and the program
resumes. The syntax is the keyword INPUT followed by an optional prompt, if the prompt is

CHAPTER 4 – WRITING BASIC PROGRAMS 90

used it must be followed by a semicolon, then a variable name or a list of variables
separated by commas. When the simple example below is run you should notice the “?” and
the flashing cursor. The program is waiting for input.

10 LET X$="X16"
20 INPUT "ENTER THE COMPUTER MODEL NUMBER";X$
30 PRINT X$

Listing 11 – Example of INPUT Statement

The INPUT statement is programmer and somewhat user friendly too. In the above example
if you enter a string of text over 255 characters, longer than allowed for a string variable,
the command truncates the text. When truncating text, no error will be created so your
program can continue running. The way the text can get truncated can be **TODO** how is
text truncated **TODO** If nothing is entered and the RETURN key is pressed the contents
of the variable will be left as is. The statement also has basic data type checking. If the
variable passed to it a numeric variable, then the data entered by the user must be numeric
data as well.

10 INPUT "WHAT IS THE NUMBER AFTER X IN X16";X
20 PRINT X

Listing 12 – Example of INPUT statement

In the above example if you type text and press enter a “REDO FROM START” error will be
displayed, and the prompt will be displayed on a new line again. The correct data type must
be entered.

The INPUT statement can be passed a list of variables for input. There is a major difference
when there are multiple variables with respect to variable existing value being replaced. If
no value is entered at all and the RETURN key is pressed the INPUT statement will process it
as zero value and replace the existing value in the variables with zero. If a single value is
entered and RETURN key is pressed the INPUT statement processes the input and realises
that other inputs are required. The program will then prompt with a “??” for the next value.
The double? Represents that more input is required from the user.

10 INPUT "ENTER IN VALUES FOR X,Y AND Z";X,Y,Z
20 PRINT "X IS =",X," AND Y=",Y," AND Z=",Z

Listing 13 – Example of INPUT statement

Another important feature is when using multiple variables, the comma character becomes
the separator between values. The below example shows three variables being input from a
user.

10 INPUT "ENTER IN VALUES FOR X,Y AND Z";X,Y,Z
20 PRINT "X IS =",X," AND Y=",Y," AND Z=",Z
RUN
ENTER IN VALUES FOR X,Y AND Z? 1,10,100
X IS = 1 AND Y = 10. AND Z= 100

Listing 14 – Example of INPUT statement

Be aware of the comma and the type and amount of data the user may want to enter. For
example, if the values of X, Y or Z had been 1000 or 10000 the user may have entered 1,000

CHAPTER 4 – WRITING BASIC PROGRAMS 91

or 10,000 as the values. The INPUT statement will interpret the comma as the separator. So,
if the user had entered “10,000, 1,000, 10” the INPUT statement will have stored the value
“10” in the first variable, “000” in the second variable and “1” in the third variable. The
other values would have triggered the “?EXTRA IGNORED” warning message. Whenever
extra input is sent to the INPUT statement it will ignore the extra data and display this
warning message. If the incorrect type of data is entered, then the “?REDO FROM START”
error message will be displayed. When this error is displayed none of the variables will be
updated and the user will have to input all of the data again from the start.

TODO check
Normally it is possible to press RUN/STOP to stop processing of a BASIC program. However,
while the INPUT statement is waiting for input this is not possible. To break out of the
program you must press RUN/STOP and RESTORE.

Summary - INPUT

 • The syntax is the keyword INPUT, followed by an optional

prompt with a semicolon. Then a variable or variable list

 • The program will wait for a user input

 • When there is more than a single variable used the comma

in the input is treated as a separator

 • The optional prompt will be displayed with a question

mark after it

 • If too much data is entered a warning message “?EXTRA

IGNORED”

 • If not, enough data is entered “??” will be displayed on

a new line with the cursor waiting for new input

 • If too much data is entered a warning message “?EXTRA

IGNORED” will be displayed and extra data will be ignored

 • If the wrong data type is entered as data, then the error

message “?REDO FROM START” will be displayed and all data

must be re-entered

 • The INPUT statement cannot be used in immediate mode, if

attempted a “?ILLEGAL DIRECT ERROR” will be displayed

MOUSE command
The X16 has support for mice built in unlike many of the early 1980s computers. The simple
command MOUSE can enable or disable the mouse pointer. With this command it is
possible to create a basic GUI for your program or use the mouse for a game. The syntax is

CHAPTER 4 – WRITING BASIC PROGRAMS 92

the keyword MOUSE followed by 1 to enable the mouse or 0 to disable it. When the mouse
is enabled, the kernel will update several special integer variables.
TODO $FF option, configure custom mouse pointer.

MOUSE 1

Virtual screen 55

Summary - MOUSE

 • The X16 supports a mouse

 • Syntax is the keyword MOUSE followed by a 1 to enable or

0 to disable

Mouse Detail (MX/MY/MB) Integer function
The MX, MY and MB functions will read information about the mouse. The MB function will
return a value ranging from 0 to 4. If the left mouse button is currently pressed the value
will be one, if the right mouse button is pressed it will be 2, the third button will return the
value of 4, otherwise it will be zero. The MX function will return a value ranging from 0 to
639 which represents its X axis location on screen. The MY function will return a value
ranging from 0 to 479 which represents its Y axis location on screen. These integer functions
cannot be used as statements by themselves, doing so will create a “?SYNTAX ERROR”.
These functions must be used by other statements to provide information about the mouse
pointer. The example below demonstrates enabling the mouse pointer, using MX and MY to
display its location and using MB to work out if a mouse button is being pressed.

10 MOUSE 1
20 PRINT "MOUSE IS CURRENTLY AT:",MX,MY
30 IF MB=1 THEN PRINT "LEFT MOUSE BUTTON PRESSED"
40 GOTO 20

Listing 15

Joypad (JOY) statement
The X16 comes with two NES/SNES style joypad/joystick ports. This type of joypad enables
more button options than many vintage computers. Compared to the old Commodore 64
that had two joystick ports, each with four directions and fire buttons 1 and 2. However,
very few games used fire button 2. Each of the X16 two joypad ports has four directions and
four function buttons, allowing a lot of flexibility. The function buttons are “A”, “B”, “Select”
and “Start”.

Reading and processing user input from a joypad is essential for games. The JOY(N)
statement allows us to query the state of either joystick port. It will return the status of all
of the buttons. The value returned is a decimal value. The syntax is JOY(N), where N is either
1 or 2. 1 represents joypad port one and the value 2 represents port two. The abbreviated

CHAPTER 4 – WRITING BASIC PROGRAMS 93

form of the command is J and Shift-O. This command works in immediate and program
mode.

PRINT JOY(1)
 16

READY.
PRINT JOY(2)
 0

Virtual screen 56 – Example of JOY command

The value 16 may appear odd. When we look at the below table, we see that there are some
keyboard keys that also map to the joypad actions. The return key maps to the Start button
for Joy 1 and has a value of 16.

Each button pressed on the joypad is equal to a particular value.
Table 12 – Joypad button values

Value 1 2 4 8 16 32 64 128
Joypad 1

or 2
Right Left Down Up Start Select B A

Keyboard
Mapping
for Joy 1

Cursor
Right

Cursor
Left

Cursor
Down

Cursor
Up

Return Space Alt Ctrl

Keyboard
Mapping
for Joy 2

None None None None None None None None

The different combinations of these values let us know which buttons are currently pressed.
For example, when the Right, Up, and B buttons are pressed simultaneously, the value
would be 1 + 8 + 64 = 73. Another example could be Left, Down and A, the value being 2 + 4
+ 128 = 134. Using the different combinations of these values lets us program all the
possible valid combinations the player can use.

10 J=JOY(1)
15 PRINT J
20 IF J = 0 THEN GOTO 100
25 IF J = 1 THEN PRINT "RIGHT":GOTO 100
30 IF J = 2 THEN PRINT "LEFT":GOTO 100
35 IF J = 3 THEN PRINT "RIGHT AND LEFT":GOTO 100
40 IF J = 4 THEN PRINT "DOWN":GOTO 100
45 IF J = 8 THEN PRINT "UP":GOTO 100
50 IF J = 9 THEN PRINT "UP AND RIGHT":GOTO 100
55 IF J = 10 THEN PRINT "UP AND LEFT":GOTO 100
60 IF J = 16 THEN PRINT "START":GOTO 100
65 IF J = 24 THEN PRINT "START AND UP":GOTO 100
70 IF J = 32 THEN PRINT "SELECT":GOTO 100
75 IF J = 40 THEN PRINT "SELECT AND UP":GOTO 100
80 IF J = 64 THEN PRINT "B":GOTO 100
85 IF J = 68 THEN PRINT "B AND DOWN":GOTO 100
90 IF J = 72 THEN PRINT "B AND UP":GOTO 100
95 IF J = 128 THEN PRINT "A":GOTO 100
100 REM UPDATE PLAYER
110 REM UPDATE OTHER ELEMENTS
120 REM UPDATE GRAPHICS AND DRAW TO SCREEN
130 GOTO 10

Listing 16 – Example program using JOY command

CHAPTER 4 – WRITING BASIC PROGRAMS 94

Summary - JOY

 • The X16 supports two NES/SNES joypads

 • The syntax is JOY, followed by a (with the value 1 or 2,

followed with a closing)

 • Abbreviated JOY command is J Shift-O

Error reporting

In immediate mode when a mistake was made, the X16 would report a SYNTAX ERROR
straight away.
IF X=1 PRINT “X EQUALS 1”

?SYNTAX ERROR
However, in the deferred mode, you will not receive an error until the program is executed.
The X16 will provide extra information than the immediate mode. The error message will
report the line number that has the error. This becomes very important in larger programs.
LIST
10 IF X=1 PRINT “X EQUALS 1”
RUN

?SYNTAX ERROR IN 10
READY.
We can see in the above example that it is missing the THEN keyword from the IF
statement.

Error Messages

TODO Page 69 from Computes Programming The commodore 64 – the definitive guide
revised edition.

Interacting with devices

Easily interacting with a device can be done with a file. The file is then read or written to,
performing input or output. The X16 has four main file types: PRG, SEQ, REL, USR.

PRG, are generally program files, which contain executable code. When the X16 LOADs a
PRG file it will read the first two bytes. The first two bytes indicate the location in memory
the executable code should be loaded into. PRG files can also be used for data files.

REL is a relative file. These files do have a basic file structure. They contain an index. Each
record can be 254 bytes in size. With the index is it possible to read/write to any part of the
file.

CHAPTER 4 – WRITING BASIC PROGRAMS 95

SEQ, are sequential data files. Because these files are stored sequentially, they are read
from start to end. They are often used for storing a single file such as a text file document, a
graphic file or other such user or data file. SEQ files are flat and contain no structure. This
means it is not possible to move to a particular location inside the files.

USR is a user-specified file. They are the same as SEQ files in that they are plain data
formats. No part of the file has a specified meaning unlike with REL and PRG file types.

OPEN command
Like modern computers, when accessing a file, the X16 must create a unique variable to
manage the file. These special variables are called file descriptors or filehandles. In BASIC
the filehandles are called logical file numbers. Logical file numbers must be created before
other commands can access a file. The OPEN statement makes these logical file numbers.
The syntax is the OPEN keyword followed by the logical file number parameter, a comma,
the device number parameter, a comma, an options secondary address parameter, a
comma, and an optional command string.

The logical file number can be from 1 to 255. **TODO** CHECK IF FILES OVER 128 USED BY
X16 ** It is a good idea to keep your file numbers from 1 to 127. When there is more than
one file open the logical file numbers used must be unique. All input and output statements
use the logical file number to access that particular file. The device number can be 0 to 15,
see the below table.

All logical file numbers used must be unique.

The secondary address number can be 0 to 15. This parameter passes different information
depending on the device. The value of 15 is reserved as the command channel to the device
controller.

Device Device# Secondary Address
Number

String

Keyboard 0
?was cassette 1
Modem 2 0 Control registers
Screen 3
Printer 4 or 5
Disk 8 to 11 0 = LOAD program

file
1 = SAVE program
file
2-14 = Data channel
15 = Command
channel

CHAPTER 4 – WRITING BASIC PROGRAMS 96

Table 13 – Device and address codes.

The command string is interpreted by the device being accessed. As a result, the command
string can be varied. When dealing with the SD card it can have three parts. The filename
and then the optional parameters of type and mode. The type can be left blank but if done
so the mode parameter should be omitted. Type can be PRG, SEQ, REL, USR or ID.
TODO ID is a new type which is…. The mode parameter can be R for read access, W for
write access and **TODO**

10 OPEN 10,8,

Summary - OPEN

 • OPEN command used to create logical file number which

enables input/output

 • The syntax is the OPEN keyword followed by the logical

file number parameter, a comma, the device number

parameter, a comma, an options secondary address

parameter, a comma and then an optional command string

 • Logical file numbers are used to differentiate between

currently open files

 • Logical file numbers can be from 1 to 255

INPUT# statement
Just like the earlier INPUT statement INPUT# will

TODO

Because INPUT# is for us on files or devices it is possible to do a little trick to get input from
the user without an? appearing on screen similar to INPUT. We open the keyboard like any
other device. The keyboard is device 0. Using the OPEN command, we open file 1 from
device 0. Consider the below example.

10 OPEN 1,0
20 PRINT "ENTER A WORD:";
30 INPUT#1,A$
40 PRINT
50 PRINT "YOU ENTERED=";A$

Listing 17 – I/O example using OPEN and INPUT#

GET# statement
Sometimes reading in a single character at a time is what is required. For this task, the GET#
statement is just like the GET statement. However, instead of getting a single character from

CHAPTER 4 – WRITING BASIC PROGRAMS 97

the keyboard, it will get the data from a logical file number. The syntax is the keyword GET
followed immediately by the hash symbol (#) then a comma followed by a list of variables
separated by commas.

10 OPEN 1,8,2,"HIGHEST-SCORE"
20 GET#1,A$: PRINT A$
30 CLOSE 1

Virtual screen 57 – Example of GET# statement

Status (ST) reserved variable
When performing any input/output action on an open file the KERNAL will store a status
code in the reserved variable ST. The status code is an integer that can have several
different values based on the outcome of the I/O action. While the status code can be read
as an integer, the KERNAL is simply setting a single bit value.

ST Bit Set ST Value Meaning
%0000 0001 1
%0000 0010 2
%0000 0100 4
%0000 1000 8
%0001 0000 16
%0010 0000 32 Checksum error
%0100 0000 64 End of File (EOF)
%1000 0000 128 Device not present?

Table 14 – Status codes

PRINT# statement
The PRINT# is a more flexible version of the PRINT statement. It is possible to write data to
any device not just the video display. The syntax is the keyword PRINT followed immediately
by the hash symbol (#) then the logical file number followed by a list of variables separated
by commas.

The below example will save the contents of three variables to disk.

10 OPEN 1,8,2,"PRINT-FILE-DATA,USR,W"
20 A$="COMMANDER X16"
30 B$="BASIC"
40 C$="PRINT# DATA TO FILE"
50 PRINT#1,A$,B$,C$
60 CLOSE 1

Listing 18 – I/O Example saving data to SD card using PRINT#

The below example will read back the three variables from disk and display.

10 OPEN 1,8,2,"PRINT-FILE-DATA,USR,R"
20 INPUT#1,A$,B$,C$
30 PRINT "DATA=",A$,B$,C$
40 CLOSE 1

Listing 19 – I/O Example reading data from SD card using INPUT#

CHAPTER 4 – WRITING BASIC PROGRAMS 98

CMD command
TODO By default, the X16 displays output to the screen. We can change that using the
CMD command. We can redirect output from the screen to a logical file. The actual file can
be on disk, sent to the printer or other I/O device.

CLOSE command
After work has been completed on a file it should be closed so that all buffered data is
written to the disk or device. Once a file is closed the logical file no longer exists. Memory
that was being used is then released. The logical file number can now be reused if required.
The syntax is the keyword CLOSE followed by the logical file number.

Summary - CLOSE

 • It is important to CLOSE a file so that buffered data is

written to the file

 • Syntax is the keyword CLOSE followed by the logical file

number

TODO demo open file and keyboard, get input and save to disk and close file and
keyboard.

WAIT statement
The WAIT statement causes the current program processing to wait until a location in
memory matches a specific bit pattern. The memory location is often pointed towards a
register used by a device. The device could be the keyboard, internal timers or an external
device via the IEC or serial port.
TODO

Debugging

“Computers are like Old Testament gods; lots of rules and no mercy.” V-
Joseph Campbell, The Power of Myth

Debugging is the process of finding and resolving errors in your program. The chances of
your program running perfectly the first time are not good. It is easy to create a bug in
software without realising it. Simple typing mistakes, missing a semicolon, forgetting a
statement. Then the more difficult bugs where there is a logical error, normally based on
false assumptions. When debugging you need to find and fix all of the problems with your
software. With modern computers and software there are many tools and techniques to

CHAPTER 4 – WRITING BASIC PROGRAMS 99

assist debugging. BASIC has a few commands which can be used for debugging. We will
cover the techniques or post-mortem debugging and print debugging.

Post-mortem debugging
Post-mortem debugging is the process of debugging a program that has stopped and
reported an error message. Generally fixing these sorts of bugs is the easiest. Errors are
inevitable, even for experienced programmers. The error message being displayed is a
diagnostic tool pointing you to the error. Normally the error messages will not only tell you
the error but the line in the program which is triggering the error. Unfortunately, BASIC
error messages can be a bit cryptic. The below table includes common errors and possible
causes for the error.

Error Message Possible Cause
?BAD SUBSCRIPT An array has been dimensioned improperly. Check the DIM

statement and confirm number of variables and elements in the
array.

?BREAK The program was stopped. It is possible to use the CONT
command to continue from the break point. It is possible to use
the RUN command to re-run the entire program.

?CAN’T CONTINUE The program cannot be continued using the CONT command.
You will this error if the program has not been RUN yet. The
error can be caused if program was edited after it was stopped,
which erases variables. If the CLR command was processed it
has erased the variables. Or a direct mode error has occurred
which the system cannot distinguish from a program error.

?FILE OPEN ERROR IN
<LINE>

An OPEN statement is attempting to use a logical file number
which is currently open and in use.

EXTRA IGNORED Too much data was entered in response to an INPUT statement
ILLEGAL QUANTITY The number or input used as part of a statement or function

does not make sense.

?ILLEGAL DIRECT A statement or command has been used which is not valid in
direct mode. The statement or command can only be used in
program mode. For example, INPUT#

NEXT WITHOUT FOR There is an error with a FOR…NEXT loop structure. Check to see
if the variable used for the NEXT statement is correct.

OUT OF DATA The program attempted to READ data, however there was none
left to read.

OUT OF MEMORY The X16 has no memory available for the program. Or the
program has run out of stack space from using to many
subroutines (GOSUB statements) or to many FOR…NEXT loops.

REIM’D ARRAY The DIM statement has been used incorrectly. Or you have
tried to use an array (with a subscript size larger than 10)
before it was dimensioned.

REDO FROM START A character or string was input to the computer when a number
was required.

CHAPTER 4 – WRITING BASIC PROGRAMS 100

RETURN WITHOUT
GOSUB

A RETURN statement has been used without a matching GOSUB
command.

?SYNTAX ERROR Most likely there is a punctuation or spelling error which breaks
the syntax of a command.

UNDEF’D STATEMENT The program flow has been directed to a non-existent line
number by GOTO or GOSUB.

Print debugging
Print debugging a simple method and uses the print statement. It is simply a matter of
placing print commands in your code so you can see the progress of the code. The print
statement should be providing as much information as possible. Print statements should
display some location data as well as the value of variables to assist with your understanding
of what is happening. Modern programming tools have the idea of debug flags and code.
BASIC does not have this, but we can recreate it using a variable to set if we want to display
our debug code or not. We can use a variable to set a flag and have different parts of our
problem response to the debug flag. For example, debug=1 could mean all debug code in
module 1 runs, debug=8 meaning all debug code in module 8 runs and so on. This method
might be handy is large programs so you might not need all the debugging code to be
running, just the troublesome section. It is worth noting before you release your program it
should be optimised to remove the debug code. Optimization is covered in a later chapter.
Consider the below example.

10 DB=1 REM SET DEBUG LEVEL TO 1
20 FOR I=1 TO 10
30 FOR J=1 TO 10
40 REM MAJOR TASK 1
50 REM PRINT DEBUG
60 IF DB=1 THEN PRINT "TASK 1 – DEBUG: I=",I,"J=",J
70 NEXT J
80 NEXT I

Listing 20

Another method of print debugging is having a subroutine that displays information. Using
RUN/STOP to break out of a loop or the program and call the subroutine. Consider the
below example, using GOSUB 60000 to display debugging information.

10 FOR I=1 TO 100
20 FOR J=1 TO 100
30 REM MAJOR TASK 1
40 LET X=X+J*I: LET Y=X/2
50 NEXT J
60 NEXT I
70 END
60000 REM DEBUG INFO
60010 PRINT "–DEBUG INFO –"
60020 PRINT "LOOP COUNTERS: I=",I,"J=",J,"K=",K
60030 PRINT "VARIABLES: X=",X,",Y=",Y
60040 RETURN

Listing 21

Breakpoints
Breakpoints are not a modern idea; they were invented for the ENIAC computer in 1945.
They are simply intentionally pausing or stopping a program. During this pause, the
computer’s memory and CPU can be inspected and modified if required. Modern software

CHAPTER 4 – WRITING BASIC PROGRAMS 101

development environments allow for breakpoints to be configured easily and for the
programmer to step thru the execution of the program. Using breakpoints is a very
important technique for a programmer. BASIC provides two statements that give us some of
the functionality, the STOP and CONT statements.

STOP statement
The STOP statement is used to stop the currently running program and switch modes from
program mode to direct mode. Using the RUN/STOP key has the same effect as a STOP
statement, except you can place it in the program exactly where you want it to stop.
Multiple STOP statements can be placed strategically around your program to aid in
debugging it. When used in your code it stops the program and displays the warning
message “BREAK IN XX” where XX is the line number of the program. All the currently used
variables stay in memory, and any open files remain open. It is then possible to view the
contents of variables. Once a program has been stopped this way it is possible to continue
the program running by using a GOTO line number, to have the continue running from that
point. It is often used in conjunction with the CONT command.

10 FOR I=1 TO 10
20 FOR J=1 TO 10
30 LET X=X+J*I: LET Y=X/2
40 NEXT J
50 STOP
60 NEXT I

Listing 22

When faced with a difficult bug remember you can create a conditional breakpoint by using
some simple IF…THEN statements. The bug may only be occurring under a specific
condition. Consider the below code.

10 FOR I=1 TO 10
20 FOR J=1 TO 10
30 LET X=X+J*I: LET Y=X/2
40 IF J=5 AND X>10000 THEN STOP
40 NEXT J
50 IF I>7 THEN STOP
60 NEXT I

Listing 23

Combining the idea of debug levels and conditional breakpoints we can create very flexible
debugging code to help troubleshoot those different to solve problems.

CONT statement
This statement allows a program to continue after a STOP statement, an END statement or
RUN/STOP. This command is useful for programmers and is often used with the STOP
statement. Using the CONT statement the program will continue from the exact location it
was stopped. When a program has been stopped a programmer may view the listing of the
program. Editing any line of the program, even pressing return on an unmodified line,
results in a change, will prevent the CONT statement from working. If the program is
modified in anyway and the CONT statement is processed a “CAN’T CONTINUE” will be
displayed. Experiment with the code listed below. Run the program and press RUN/STOP to
stop the program. Just like with the STOP statement you will be able to view variables and
list the program code.

CHAPTER 4 – WRITING BASIC PROGRAMS 102

10 LET PI=0: LET C=1
20 PI = PI+4/C-4/(C+2)
30 PRINT PI
40 LET C=C+1
50 GOTO 20

Listing 24

Use the CONT statement and notice that the program continues from where it left off.

If the program is modified in anyway, it will prevent
the CONT statement from working.

Summary
• Post-mortem debugging involved reviewing the error messages from

the system and working out what caused it.

• Print debugging requires extra code to be placed in the program to

print out messages and variables to assist with troubleshooting.

• Breakpoints allow program to be paused at a position that interests

the programmer. While paused the contents of the variables and code

can be reviewed.

• It is possible to continue after a pause so long as no program code

is modified. The value of variables can be modified.

• The STOP statement is used to create breakpoints, pausing the

program

• The CONT statement is used to continue processing the program

• It is possible to review the contents and status of the CPU and

memory using the MONITOR command.

BASIC Errors

In BASIC you cannot really ignore errors because the program stops. However, when you
experience them you should stop and pull part from is happening. Making a quick fix to get
around the error is lazy programming and not a good strategy for quality code.

You want to make sure your code is solid and easy to read. Otherwise, you could end up
with brittle code. Code which you will be excited to search for hours on hard-to-find bugs.

Getting a lot of errors, your code could be poorly structured. It might be time to review your
design. Your design should be able to handle all conditions. Everything a user could do, but
also all the possible values that could be given to it. Asking a user, a ‘Yes’ or ‘No’ question,
you should also check for other input.

Why people do not try to prevent errors?

CHAPTER 4 – WRITING BASIC PROGRAMS 103

“It’s extra work.”
“This function will never get that input.”
“It’s a toy program so it doesn’t matter.”

However, I want you to create good code. To learn good habits now so you carry them over
to your future programming projects.

TODO list BASIC errors, about 30+ of them.

